首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel polymer-supported titanium-based catalyst shows high activity and nondecaying kinetic profiles for ethylene polymerization. The presence of 1-hexene comonomer drastically increases the catalyst activity, exhibiting a similarity to the MgCl2-supported catalysts. However, the nondecaying kinetic profiles of copolymerization distinguish this catalyst from the latter. Infrared analysis indicates that the transition metals were immobilized on the polymer support via functional groups. The effects of polymerization conditions on catalyst activity have been assessed. Characterization of the resulting polymer product by means of 13C-NMR, DSC, and SEM demonstrates a branch-free structure with high melting point, high crystallinity, and high molecular weight for the ethylene homopolymer. The reactivity ratios of ethylene-1-hexene copolymerization are evaluated from 13C-NMR analysis data. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
Kinetics of ethylene homopolymerization reactions and ethylene/1-hexene copolymerization reactions using a supported Ziegler–Natta catalyst was carried out over a broad range of reaction conditions. The kinetic data were analyzed using a concept of multicenter catalysis with different centers that respond differently to changes in reaction parameters. The catalyst contains five types of active centers that differ in the molecular weights of material they produce and in their copolymerization ability. In ethylene homopolymerization reactions, each active center has a high reaction order with respect to ethylene concentration, close to the second order. In ethylene/α-olefin copolymerization reactions, the centers that have poor copolymerization ability retain this high reaction order, whereas the centers that have good copolymerization ability change the reaction order to the first order. Hydrogen depresses activity of each type of center in the homopolymerization reactions in a reversible manner; however, the centers that copolymerize ethylene and α-olefins well are not depressed if an α-olefin is present in the reaction medium. Introduction of an α-olefin significantly increases activity of those centers, which are effective in copolymerizing it with ethylene but does not affect the centers that copolymerize ethylene and α-olefins poorly. To explain these kinetic features, a new reaction scheme is proposed. It is based on a hypothesis that the Ti—C2H5 bond in active centers has low reactivity due to the equilibrium formation of a Ti—C2H5 species with the H atom in the methyl group β-agostically coordinated to the Ti atom in an active center. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4255–4272, 1999  相似文献   

3.
This article describes studies on the variables that regulate the molecular weight in ethylene polymerization using a highly active Ziegler–Natta catalyst with hydrogen for molecular weight control. The dependence of the degree of polymerization on the concentration of catalyst, cocatalyst, monomer, partial pressure of hydrogen, and temperature has been established. The rate constant for chain transfer with cocatalyst has been evaluated. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Ethylene polymerization reactions with many Ziegler–Natta catalysts exhibit several features which differentiate them from polymerization reactions of α-olefins: a relatively low ethylene reactivity, higher polymerization rates in the presence of α-olefins, a high reaction order with respect to ethylene concentration, and strong reversible rate depression in the presence of hydrogen. A detailed kinetic analysis of ethylene polymerization reactions (see ref. 1 ) provided the basis for a new reaction scheme which explains all these features by postulating the equilibrium formation of a Ti C2H5 species with the H atom in the methyl group β-agostically coordinated to the Ti atom in an active center. This mechanism predicts that the β-agostically stabilized Ti C2H5 groups can decompose in the β-hydride elimination reaction with expulsion of ethylene and the formation of a Ti H bond even in the absence of hydrogen in the reaction medium. If D2 is used as a chain transfer agent instead of H2, the mechanism predicts the formation of deuterated ethylene molecules, which copolymerize with protioethylene. To prove this prediction, several ethylene homopolymerization reactions were carried out with a supported Ziegler–Natta titanium-based catalyst in the presence of large amounts of D2. Analysis of gaseous reaction products and polymers confirmed the formation of several types of deuterated ethylene molecules and protio/deuterioethylene copolymers, respectively. In contrast, a metallocene catalyst, Cp2ZrCl2 MAO, does not exhibit these kinetic features. In the presence of deuterium, it produces only DCH2 CH2 (CH2 CH2)x CH2 CH2D molecules. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4273–4280, 1999  相似文献   

5.
Ethylene polymerization reactions with many Ziegler–Natta catalysts exhibit a number of features that differentiate them from polymerization reactions of α olefins: (1) a relatively low ethylene reactivity, (2) markedly higher polymerization rates in the presence of α olefins, (3) a high reaction order with respect to ethylene concentration, and (4) a strong reversible rate depression in the presence of hydrogen. A detailed kinetic analysis of ethylene polymerization reactions1 provided the basis for a new kinetic scheme that postulates the equilibrium formation of Ti C2H5 species with the H atom in the methyl group β-agostically coordinated to the Ti atom in an active center. This mechanism predicts several new features of ethylene polymerization reactions, one being that chain initiation via insertion of any α-olefin molecule into the Ti H bond should proceed with an increased probability compared to that via ethylene insertion into the same bond. As a result, a significant fraction of ethylene/α-olefin copolymer chains should contain α-olefin units as the starting units. This article provides experimental data supporting this prediction on the basis of both a detailed structural analysis of co-oligomers formed in ethylene/1-pentene and ethylene/4-methyl-1-pentene copolymerization reactions and a spectroscopic analysis of chain ends in the copolymers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4281–4294, 1999  相似文献   

6.
This paper discusses the copolymerization reaction of propylene and p-methylstyrene (p-MS) via four of the best-known isospecific catalysts, including two homogeneous metallocene catalysts, namely, {SiMe2[2-Me-4-Ph(Ind)]2}ZrCl2 and Et(Ind)2ZrCl2, and two heterogeneous Ziegler–Natta catalysts, namely, MgCl2/TiCl4/electron donor (ED)/AlEt3 and TiCl3. AA/Et2AlCl. By comparing the experimental results, metallocene catalysts show no advantage over Ziegler–Natta catalysts. The combination of steric jamming during the consective insertion of 2,1-inserted p-MS and 1,2-inserted propylene (k21 reaction) and the lack of p-MS homopolymerization (k22 reaction) in the metallocene coordination mechanism drastically reduces catalyst activity and polymer molecular weight. On the other hand, the Ziegler–Natta heterogeneous catalyst proceeding with 1,2-specific insertion manner for both monomers shows no retardation because of the p-MS comonomer. Specifically, the supported MgCl2/TiCl4/ED/AlEt3 catalyst, which contains an internal ED, produces copolymers with high molecular weight, high melting point, and no p-MS homopolymer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2795–2802, 1999  相似文献   

7.
Homopolymerization of ethylene and 1-hexene and their copolymerizations were compared to investigate the influence of α-olefin on the enhancement of ethylene polymerization rate (Rp), which is often referred to as the “comonomer” effect. With the two homogeneous Ziegler–Natta catalysts, Et[Ind]2ZrCl2/MAO and (π-C5H5)2ZrCl2/MAO (MAO = methylaluminoxane), hexene causes reduction of Rp—in other words a negative “comonomer” effect. In the case of the high activity MgCl2 supported TiCl3 catalysts there is a slight positive “comonomer” effect; the Rp increases by 25 to 70% with the addition of 15 mol % of hexene. The “comonomer” effects in there catalyst systems are much smaller than that observed for the classical TiCl3 catalyst. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
In the present article, a novel hollow spherical lignin‐supported vanadium‐based Ziegler–Natta catalyst was synthesized. The active centers of the obtained catalyst well dispersed in the lignin through the SEM‐EDX analysis. The resultant catalyst was investigated in ethylene polymerization and found to exhibit remarkable catalytic activity upon activation with ethylaluminium sesquichloride cocatalyst and ethyl trichloroacetate activator. During the polymerization, the lignin was gradually exfoliated by the polymerization force arising from the propagation of ethylene chain. The resultant PE/lignin nanocomposites preformed higher thermal stability compared to virgin PE. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The magnesium chloride supported Ziegler–Natta catalysts are able to copolymerize ethylene and styrene in conditions of high activity. Different parameters, including catalyst type, monomer ratio, temperature and Lewis bases, allow variation of the activity and reactivity ratio. The incorporation of styrene in the copolymer remains always rather limited in moles. The products obtained contain less than 20% styrene in weight, and seem very similar in structure to linear low-density polyethylenes (LLDPE) obtained with the same catalyst: the melting temperature is only about 5°C lower than that of pure polyethylene. The polymer can be fractionated by solvents in a similar manner to LLDPE, and contains a styrene-enriched fraction, but homopolystyrene production has never been observed.  相似文献   

10.
The very early stages of gas‐phase ethylene polymerization on an SiO2‐supported Ziegler–Natta catalyst were studied with the help of a short‐stop reactor. The short‐stop‐reactor‐based technique was useful in studying nascent polymerization, providing insights at very short, controlled times into important phenomena regarding catalyst fragmentation and the activation and deactivation of catalyst sites that take place during the very early stages of the reaction. Experimental results indicate that the growth of the polymer chains occurs at unsteady conditions during the initial stages of the polymerization. Hydrogen has a strong influence on the initial kinetics, leading to a significant decrease of polymerization activity. Polymer crystallinity increases with the reaction time, probably due to the formation of long chains with a high degree of crystallinity.

  相似文献   


11.
This paper presents an experimental kinetic study of the polymerization of propylene in liquid monomer with a high activity catalyst. The influences of the concentration of hydrogen and the molar ratios of the catalyst, cocatalyst, and electron donor on the activation period, the maximum activity, the yield, and the decay behavior have been investigated at a temperature of 42°C using a relatively simple kinetic model. On the basis of the experimental data, the reaction rate has been modeled as a function of the hydrogen concentration, the molar ratio of cocatalyst and titanium, and the molar ratio of the electron donor and the cocatalyst. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 219–232, 1999  相似文献   

12.
The polymerization of propylene using a mixture of racemic metallocenes and Ziegler–Natta catalysts was investigated. The polypropylene was obtained as a mixture of a fine powder and beads, with the powder being absorbed partially on the beads. The relative amount of the powder can be controlled by the concentration of the metallocene. The compatibility between the components of the mixed catalytic systems and the effect of the components on the rate of polymerization and on the properties of the new polymers were studied. The metallocene system dramatically affects the melt viscosity, isotacticity and molecular weight of the polymers. The two catalytic systems are able to act jointly, producing different polymers, for which separate melting and crystallization temperatures are obtained. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Propylene was polymerized with metallocene and Ziegler–Natta mixed-catalytic systems to obtain reactor blends of metallocene and Ziegler–Natta-derived propylene homopolymers. The two catalytic systems are able to act jointly, providing individual polymers with different melting and crystallization temperatures. Compatibility between the components of the mixed-catalytic systems and the influence of the components on the polymerization process and on the properties of the reactor blends were studied. Thermal, mechanical, viscoelastic, rheological, and optical properties of the blends were tested and compared with those of conventional polypropylene grades. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3063–3072, 1998  相似文献   

14.
15.
Monomer-isomerization copolymerizations of styrene (St) and cis-2-butene (c2B) with TiCl3-(C2H5)3Al catalyst were studied. St and c2B were found to undergo a new type of monomer-isomerization copolymerization, i.e., only isomerization of 2B to 1-butene ( 1B ) took place to give a copolymer consisting of St and 1B units. The apparent copolymerization parameters were determined to be rst = 16.0 and rc2b = 0.003. The parameters were changed by the addition of NiCl2 (rSt = 8.4, rc2b = 0.05). The copolymers containing the major amount of St units were produced easily through monomer-isomerization copolymerization of St and 2B. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
A new approach to detailed Tref analysis of ethylene/α‐olefin copolymers prepared with multi‐center polymerization catalysts is developed. It is based on resolution of complex Tref curves into elemental components described with the Lorentz distribution function. This approach was applied to the study of a series of ethylene/1‐butene copolymers prepared with a supported Ti‐based catalyst. The analysis showed that the copolymers, which, on average, contain from 6.5 to 3.5 mol % of 1‐butene, consist of seven discrete components with different compositions, ranging from a completely amorphous material with a 1‐butene content of > 15–20 mol %, to two highly crystalline components with 1‐butene contents < 1 mol %. A comparison of these Tref results with the data on the molecular weight distribution of the copolymers (based on resolution of their GPC curves) shows that Tref and GPC data provide complimentary information on the properties of active centers in the catalysts in terms of the molecular weights of the material they produce and their ability to copolymerize α‐olefins with ethylene. Tref analysis of copolymers produced at different reaction times showed that the active centers responsible for the formation of various Tref components differ in the rates of their formation and in stability. The centers that produce copolymer molecules with a high 1‐butene content are formed rapidly but decay rapidly as well whereas the centers producing copolymer molecules with a low 1‐butene content are formed more slowly but are more stable. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4351–4362, 2005  相似文献   

17.
The previously developed kinetic scheme for olefin polymerization reactions with heterogeneous Ziegler–Natta catalysts states that the catalysts have several types of active centers which have different activities, different stabilities, produce different types of polymer materials, and respond differently to reaction conditions. In the case of ethylene polymerization reactions, each type of center exhibits an unusual chemical feature: a growing polymer chain containing one ethylene unit, Ti—C2H5, is unusually stable and can decompose with the formation of the Ti—H bond. This paper examines quantitative kinetic ramifications of this chemical mechanism. Modeling of the complex kinetics scheme described in the Scheme demonstrates that it correctly and quantitatively predicts three most significant peculiarities of ethylene polymerization reactions, the high reaction order with respect to the ethylene concentration, reversible poisoning with hydrogen, and activation in the presence of α‐olefins.  相似文献   

18.
A polymer-supported Ziegler–Natta catalyst, polystyrene-TiCl4AlEt2Cl (PS–TiCl4AlEt2Cl), was synthesized by reaction of polystyrene–TiCl4 complex (PS–TiCl4) with AlEt2Cl. This catalyst showed the same, or lightly greater catalytic activity to the unsupported Ziegler–Natta catalyst for polymerization of isoprene. It also has much greater storability, and can be reused and regenerated. Its overall catalytic yield for isoprene polymerization is ca. 20 kg polyisoprene/gTi. The polymerization rate depends on catalyst titanium concentration, mole ratio of Al/Ti, monomer concentration, and temperature. The kinetic equation of this polymerization is: Rp = k[M]0.30[Ti]0.41[Al]1.28, and the apparent activation energy ΔEact = 14.5 kJ/Mol, and the frequency factor Ap = 33 L/(mol s). The mechanism of the isoprene polymerization catalyzed by the polymer-supported catalyst is also described. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
The synthesis of mono‐ and bi‐supported Ziegler–Natta catalysts using magnesium etoxide Mg(OEt)2 and graphene oxide (GO) as catalyst support for production of Ultra High Molecular Weight Polyethylene (UHMWPE) is reported in this investigation. Nano‐graphene oxide was prepared by the modified Hummer's method and its structure was analyzed by XRD and FTIR indicating the presence of hydroxyl groups on graphene oxide and the formation of an exfoliated structure. The activity of TiCl4/Mg(OEt)2, TiCl4/Mg(OEt)2‐GO, and TiCl4/GO catalysts in terms of grams of PE produced per mmol of Ti per hour was experimentally obtained for catalysts with different ratios of co‐catalyst (triisobutylaluminium) to TiCl4. For all three series of catalysts, the activity curve showed an optimum point at a specific Al/Ti molar ratio. Catalyst activity was highest for TiCl4/Mg(OEt)2 and lowest for TiCl4/GO. The characterization of UHMWPE products indicated that the viscosity average molecular weight (Mv) was highest for the polymer produced by TiCl4/Mg(OEt)2 and lowest for the polymer produced by TiCl4/GO. Furthermore, thermogravimetric analysis (TGA), dynamic mechanical thermal analysis (DMTA), and mechanical tensile testing were conducted on the prepared polymers indicating that the polymer produced by TiCl4/GO had the highest thermal and mechanical properties, while these properties were at their minimum for polymers produced by TiCl4/Mg(OEt)2. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A fragmentable support material for Ziegler–Natta catalysts is presented based on micrometer‐sized aggregates of polystyrene nanoparticles. Hydroxyl anchoring groups are introduced by copolymerization of hydroxymethylstyrene in emulsion process to immobilize the catalysts. The catalytic activity in ethylene slurry polymerizations is found to be directly correlated to the hydroxyl group content of the supports. Furthermore, the fragmentation behavior of dye‐labeled support aggregates into the initial nanoparticles is demonstrated using laser scanning confocal fluorescence microscopy as a nondestructive method. These supported catalysts fulfill two important design criteria, high fragmentability and high catalyst loading, and produce high‐density polyethylene with medium molecular weight distributions (MWDs = 3–4). These values lie between those obtained using single‐site metallocene‐based (narrow MWD < 3) or inorganic supported multi‐site Ziegler–Natta‐based (broad MWD = 4–12) polymerizations without the need of blending. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 15–22  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号