首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On Chalcogenolates. 126. Studies on N-Cyanformamidino Dithiocarbimic Acid. 2. Thermal Behaviour of Potassium N-Cyanformamidino Dithiocarbimate in Solution The thermal treatment of K2[S2C?N? C(NH2)?N? CN] in methanolic solution yields . The semi-hydrate has been isolated. It reacts with acid to form The reaction with H3CI gives The compounds have been characterized by means of electron absorption, 1H- and 13C-N.M.R., infrared, and mass spectra.  相似文献   

2.
The formation enthalpies were ascertained from the solution enthalpies in 2 n NaOH resp. 2 n NaOH + 1% H2O2. The results of equilibrium measurements in the systems give the formation enthalpies and standard entropies: . The value of the standard entropy of the gaseous MoOCl4 was estimated to be 91 (±3) cl. From the enthalpies and entropies of sublimation the values were obtained.  相似文献   

3.
On Chalcogenolates. 121. Studies on N-Cyanomonothiocarbimic Acid. 1. Synthesis and Properties of Alkali Metal N-Cyanomonothiocarbimates The hitherto unknown N-cyanomonothiocarbimates M2[SOC?N? CN] · H2O, where M = Na, K, Rb, Cs, have been prepared by reaction of the corresponding alkali metal salt of cyanamide with COS. N-Cyanomonothiocarbimates react with sulfur to form the ion, which gives with an acid and with CH3I the methyl compound . The reaction of the latter compound with H2O2 yields . All compounds have been characterized by means of diverse methods.  相似文献   

4.
The reaction of atomic hydrogen with isocyanic acid (HNCO) to produce the amidogen radical (NH2) and carbon monoxide, has been studied in shock-heated mixtures of HNCO dilute in argon. Time-histories of the ground-state NH2 radical were measured behind reflected shock waves using cw, narrowlinewidth laser absorption at 597 nm, and HNCO time-histories were measured using infrared emission from the fundamental v2-band of HNCO near 5 μm. The second-order rate coefficient of reaction (2(a)) was determined to be: cm3 mol?1 s?1, where f and F define the lower and upper uncertainty limits, respectively. An upper limit on the rate coefficient of was determined to be:   相似文献   

5.
The reaction of O(1D) with CH4 was studied to determine the efficiency of H2 production in a direct process, and it was found to be 0.11 ± 0.02. Thus the two channels which account for all of the reaction between O(1D) and CH4 in the gas phase are   相似文献   

6.
Chemical Transport in the System Mn? O in Consideration of the Oxygen Coexistence Pressure (I) The chemical transport of the coexistent phases Mn2O3? Mn3O4 and Mn3O4? MnO with Cl2, Br2, I2, HCl, HBr, and HI was analysed thermodynamically and experimentally. The mentioned transport agents are able to transport the following phases:
  • 1 Index (o) bedeutet obere, (u) untere Phasengrenze (index (o) – upper phase boundary, (u) – lower phase boundary).
  • .  相似文献   

    7.
    The rate of the reverse reaction of the system has been measured in the range of 584–604 K from a study of the azomethane sensitized pyrolysis of isobutane. Assuming the published value for the rate constant of recombination of t-butyl we obtain Combination with our published data for k1 permits the evaluation We have modified a previously published structural model of t-butyl by the inclusion of a barrier to free rotation of the methyl groups in order to calculate values of the entropy and enthalpy of t-butyl as a function of temperature. Using standard data for H and for i-C4H8 we obtain We have obtained other, independent values of this quantity by a reworking of published data using our new calculations of the entropy and enthalpy of t-butyl. There is substantial agreement between the different values with one exception, namely, that derived from published data on the equilibrium which is significantly lower than the other values. We conclude that the value obtained from the present work and a reworking of published data which involves the use of experimental data on t-butyl recombination is incompatible with the result based on iodination data.  相似文献   

    8.
    Very strong laser emission at 5 μm was detected when SO2 and CHBr3 were flash photolyzed in the vacuum ultraviolet (λ ≥ 165 nm) in the presence of a large amount of diluent (SF6, He, or Ar). About 110 vibration–rotation transitions ranging from Δv = 18 → 17 to 3 → 2, except 16 → 15, were identified. The primary reactions leading to the CO stimulated emission are as follows: The product analysis results and the variation of laser intensity with flash energy and SO concentration indicate that the following side reactions are also occurring. Addition of a small amount of O2 enhances the laser output by both eliminating these side reactions and simultaneously producing vibrationally excited CO via reaction (8), which has been previously shown to generate CO stimulated emission. The effects of various reactive (NO and H2) and inert (He, Ar, SF6, CO, N2, N2O, and CO2) gases have been examined. All additives (P ≤ 20 torr), except NO and H2, increase the total laser output. N2O enhances the power most efficiently, whereas CO, N2, and CO2 are less effective and have similar efficiencies. The enhancement of the laser intensity by these near-resonant gases is ascribed to the depletion of CO population at lower levels which thus increases the rates cascading from higher levels. NO and H2 quench the laser output by chemically reducing the concentration of the CH radical.  相似文献   

    9.
    n-C3H7ONO was photolyzed with 366 nm radiation at ?26, ?3, 23, 55, 88, and 120°C in a static system in the presence of NO, O2, and N2. The quantum yields of C2H5CHO, C2H5ONO, and CH3CHO were measured as a function of reaction conditions. The primary photochemical act is and it proceeds with a quantum yield ?1 = 0.38 ± 0.04 independent of temperature. The n-C3H7O radicals can react with NO by two routes The n-C3H7O radical can decompose via or react with O2 via Values of k4/k2 ? k4b/k2 were determined to be (2.0 ± 0.2) × 1014, (3.1 ± 0.6) × 1014, and (1.4 ± 0.1) × 1015 molec/cm3 at 55, 88, and 120°C, respectively, at 150-torr total pressure of N2. Values of k6/k2 were determined from ?26 to 88°C. They fit the Arrhenius expression: For k2 ? 4.4 × 10?11 cm3/s, k6 becomes (2.9 ± 1.7) × 10?13 exp{?(879 ± 117)/T} cm3/s. The reaction scheme also provides k4b/k6 = 1.58 × 1018 molec/cm3 at 120°C and k8a/k8 = 0.56 ± 0.24 independent of temperature, where   相似文献   

    10.
    Hexafluoro-t-butoxy radicals have been generated by reacting fluorine with hexafluoro-2-methyl isopropanol: Over the temperature range of 406–600 K the hexafluoro-t-butoxy radical decomposes exclusively by loss of a CF3 radical [reaction (-2)] rather than by loss of a CH3 radical [reaction (-1)]: (1) The limits of detectability of the product CF3COCF3, by gas-chromatographic analysis, place a lower limit on the ratio k?2/k-1 of ~80. The implications of this finding in relation to the reverse radical addition reactions to the carbonyl group are briefly discussed. A thermochemical kinetic calculation reveals a discrepancy in the kinetics and thermodynamics of the decomposition and formation reactions of the related t-butoxy radical:   相似文献   

    11.
    The Chemistry of Metal Carbonyls and Cyano Complexes in Liquid Ammonia. XXXI. On the Reactions of Cationic η5-Cyclopentadienyl-molybdenumcarbonyl Complexes with Liquid Ammonia Depending on the reaction conditions, the cationic complexes [η5-C5H5Mo(CO)3L]+ (L = NH3, PPh3, CO) react with liquid ammonia according to: The characteristics and reactivities of the new carbomoyl derivatives are described.  相似文献   

    12.
    Earlier work on the reactions of O(3P) atoms with HCl and HBr has been extended by measuring rate constants for A flow-tube method was used with chemiluminescent monitoring of the removal of atomic oxygen. Rate constants were measured at temperatures between 340 and 489 K for (2a) and 295 and 419 K for (2b); they can be matched by the Arrhenius expressions: where the units are cm3 molecule?1 sec?1 and the errors correspond to a single standard deviation. The results of a quasiclassical trajectory study of collisions of O(3P) with HCl (v = 0,1, and 2) and DCl (v= 0,1, and 2) are also reported. These strengthen the conclusion that, although the rates of reactions (1a) and (2a) are selectively enhanced by vibrationally exciting HCl or DCl, molecules with 0 < v ? 2 are mainly removed in collisions with O(3P) atoms by nonreactive relaxation.  相似文献   

    13.
    The kinetics of the gas-phase reaction between NO2 and trichloroethene has been investigated in the temperature range 303–362.2 K. The pressure of NO2 was varied betwen 5.1 and 48.7 torr and that of trichloroethene between 7.3 and 69.5 torr. The reaction was homogeneous. Two products were formed: nitrosyl chloride, ClNO, and glyoxyloxyl chloride, HC[O]C[O]Cl, which was identified by its infrared spectrum and its molecular weight determined by chromatography. The rate of consumption of the reactants was independent of the total pressure and can be represented by a second-order reaction: The following mechanism was proposed to explain the experimental results: The following expression was obtained for k: . © John Wiley & Sons, Inc.  相似文献   

    14.
    N.M.R. Spectroscopic Studies of 15N Labelled N-Phosphorylphosphazenes and Imidodiphosphoric Acid Derivatives 15N labelled compounds were prepared and investigated by means of 31P- and 15N-NMR spectroscopy. The chemical shift values δP and δN, and the coupling constants 1JPN and 2JPP are discussed and interpreted qualitatively by semiempirical quantumchemical calculations (CNDO/2) using POPLE 'S ΔE-model.  相似文献   

    15.
    The Chemistry of Metal Carbonyls and Cyano Complexes in Liquid Ammonia. XXXII. On the Reaction of η5-C5H5Mo(CO)3CH3 and η5-C5H5Fe(CO)2CH3 with Liquid Ammonia η5-C5H5Mo(CO)3CH3 reacts with liquid NH3 to give η5-C5H5Mo(CO)2(NH3)H and acetamide: In contrast, η5-C5H5Fe(CO)2CH3 undergoes a carbonyl insertion to give the acetyl complex η5-C5H5Fe(CO)(NH3)COCH3: The NH3 ligand in η5-C5H5Fe(CO)(NH3)COCH3 can be substituted by pyridine.  相似文献   

    16.
    i-C4H9ONO was photolyzed with 366-nm radiation at ?8, 23, 55, 88, and 120°C in a static system in the presence of NO, O2, and N2. The quantum yield of i-C3H7CHO, Φ{i-C3H7CHO}, was measured as a function of reaction of reaction conditions. The primary photochemical act is and it proceeds with a quantum yield ?1 = 0.24 ± 0.02 independent of temperature. The i-C4H9O radicals can react with NO by two routes The i-C4H9O radical can decompose via or react with O2 via Values of k4/k2 ? k4b/k2 were determined to be (2.8 ± 0.6) × 1014, (1.7 ± 0.2) × 1015, and (3.5 ± 1.3) × 1015 molec/cm3 at 23 55, and 88°C, respectively, at 150-torr total pressure of N2. Values of k6/k2 were determined from ?8 to 120°C. They fit the Arrhenius expression: For k2 ? 4.4 × 1011 cm3/s, k6 becomes (3.2 ± 2.0) × 10?13 exp{?(836 ± 159)/T} cm3/s. The reaction scheme also provides k4b/k6 = 3.59 × 1018 and 5.17 × 1018 molec/cm3 at 55 and 88°C, respectively, and k8b/k8 = 0.66 ± 0.12 independent of temperature, where   相似文献   

    17.
    The kinetics of the thermal decomposition of CF3O3CF3 has been investigated in the pressure range of 15–599 torr at temperatures between 59.8 and 90.3°C and also in the presence of CO between 42 and 7°C. The reaction is homogeneous. In the absence of CO the only reaction products are CF3O2CF3 and O2. The rate of reaction is strictly proportional to the trioxide pressure, and is not affected by the total pressure, the presence of inert gases, and oxygen. The following mechanism explains the experimental results: In the presence of CO there appear CO2, (CF3OCO)2, and CF3O2C(O)OCF3 as products. With increasing temperature the amount of peroxicarbonate decreases, while the amounts of oxalate and CO2 increase. The rate of decomposition of the trioxide above a limiting pressure of about 10 torr CO is strictly first order and independent of CO pressure, total pressure, and the pressure of the products. The addition of larger amounts of O2 to the CO containing system chaqnges the course of the reaction.  相似文献   

    18.
    H2S accelerates the thermal isomerization of cis-2-pentene (P2c) to 1-pentene (P1) and trans-2-pentene (P2t) to around 800 K. This effect is interpreted on the basis of a free radical mechanism in which 2-pentenyl and thiyl radicals are the main chain carriers. P1 formation is essentially explained by the competing processes: P2t formation is due to addition-elimination processes: the importance of which has been evaluated against process (?4μ): The following ratios of rate constants have been measured and are discussed: (RT in cal mol?1).  相似文献   

    19.
    Synthesis and Spectroscopic Characterization of some Pentacarbonyltungsten(0) Complexes with Various 1H-Phosphirene Ligands: Crystal Structures of , and The tungsten(0) complex 1 reacts upon heating with acetylene derivatives 2a–f in toluene to form benzonitrile and the complexes 4a–f ( 4a : R1 ? Ph, R2 ? H; 4b : R1 ? Ph, R2 ? CH3; 4c : R1 ? OEt, R2 ? H; 4d : R1 ? Ph, R2 ? CO2Et; 4e : R1, R2 ? CO2Me; 4f : R1, R2 ? SiMe3), which have been isolated by chromatography. Spectroscopic and mass spectrometric data are discussed. The crystal structures of the compounds 4a, b and d were determined by X-ray single crystal structure analysis ( 4a : space group P21/n, Z = 4, a = 937,5(2) pm, b = 2202,4(6) pm, c = 1266,3(4) pm, β = 108,94(4)°; 4b : space group P21/c, Z = 4, a = 1293,9(2) pm, b = 923,5(1) pm, c = 2223,4(3) pm, β = 92,385(6)°; 4d : space group P21/c, Z = 4, a = 955,2(2) pm, b = 3190,9(4) pm, c = 930,7(2) pm, β = 99,64(1)°).  相似文献   

    20.
    The kinetics of the gas-phase thermal isomerization between trans- and cis-1,2-bis(trifluoromethyl)-1,2,3,3-tetrafluorocyclopropane as well as their decomposition to trans- and cis-perfluoro-2-butene, respectively, and CF2, was studied in the temperature range of 473–533°K, with an initial pressure of reactant of 1.5 to 7.0 Torr. Some runs were also made with the addition of SF6 as an inert gas up to a total pressure of 100 Torr. The reactions are first order and homogeneous. The rate constants for the geometrical isomerization fit the following Arrhenius relations: and the corresponding equations for the decomposition of the trans and cis-cyclopropane are .  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号