首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transition Metal-substituted Acylphosphanes and Phosphaalkenes. 22. Insertions of Hexafluoroacetone into the PX-Bond of Metallophosphanes (η5-C5Me5)(CO)2M? PX2 (M = Fe, Ru; X = Me3Si, Cl). Structure Determination of (η5-C5Me5)(CO)2Fe? P(SiMe3)C(CF3)2(OSiMe3) Reaction of the metallophosphanes (η5-C5Me5)(CO)2M? P(SiMe3)2 ( 1a : M = Fe; 1b : M = Ru) with hexafluoroacetone (HFA) afforded the complexes (η5-C5Me5)(CO)2M? P(SiMe3)C(CF3)2(OSiMe3) ( 2a, b ). The attempted synthesis of a metallophosphaalkene from 2a by thermal elimination of hexamethyldisiloxane failed. The acid catalyzed hydrolysis of 2a afforded compound (η5-C5Me5) · (CO)2Fe? P(H)C(CF3)2(OSiMe3) ( 3 ). Hexafluoracetone and (η5-C5Me5)(CO)2Fe? PCl2 ( 4 ) under-went reaction to give the metallochlorophosphan (η5-C5Me5) · (CO)2Fe? P(Cl)? O? C(CF3)2Cl ( 5 ). Constitutions and configurations of the compounds ( 2–5 ) were established by elemental analyses and spectroscopic data (IR, 1H-, 13C, 19F-, 29Si-, 31P-NMR, MS). The molecular structure of 2a was determined by x-ray diffraction analysis.  相似文献   

2.
3.
Transition-Metal Substituted Phosphaalkenes and Acyl Phosphanes. 31 [1] Reactivity of (η5-C5Me5)(CO)2FeP = C(NMe2)2 towards Tin Dichloride. X-Ray Structure Analysis of {(η5-C5Me5)[η1-(Me2N)2C = P? P = C(NMe2)2](CO)2Fe}+{[Me2N)2C]2P}+(FeCl4)2? Reaction of metallophosphaalkene (η5-C5Me5)(CO)2 · FeP = C(NMe2)2 ( 1 ) with anhydrous tin dichloride affords the salt-like compound {(η5-C5Me5)[η1-(Me2N)2C = P? P = C(NMe2)2] · (CO)2Fe}+{[(Me2N)2C]2P}+(FeCl4)2? 5 which is characterized by single crystal X-ray analysis and spectra (IR, 1H, 31P-NMR).  相似文献   

4.
5.
6.
Syntheses and Crystal Structures of [( t -Bu4Sb4)Fe(CO)4], [( t -Bu4Sb4)Mo(CO)5], and [( t -Bu3Sb4)Mo(η5-C5Me5)(CO)3] t-Bu4Sb4 reacts with Fe2(CO)9 to form [(t-Bu4Sb4)Fe(CO)4] ( 1 ). [(t-Bu4Sb4)Mo(CO)5] ( 2 ) is formed from (thf)Mo(CO)5 and t-Bu4Sb4. [(t-Bu3Sb4)Mo(η5-C5Me5)(CO)3] ( 3 ) is a product of the reaction of t-Bu4Sb4 with [(η5-C5Me5)Mo(CO)3]2. The crystal structures of 1–3 are reported.  相似文献   

7.
Reactivity of Monophosphine Platinum(0) Complexes with SO2 . The addition reaction of (PPh3)Pt(ViSi) (ViSi = {η2-H2C?CHSiMe2}2O) ( 1 ) with SO2 gives within 30 min the red SO2 complex (PPh3)Pt(η2-H2C?CHSiMe2- OSiMe2CH?CH2)(SO2) ( 2 ). A reaction time of 24 h with SO2 leads to the elimination of the ViSi ligand, and the unstable monomeric intermediate (PPh3)Pt(SO2) cyclo- trimerizes to the stable cluster [Pt(PPh3)(SO2)]3 ( 3 ). 3 is also obtained within 30 min by the reaction of (PPh3)Pt(C2H4)2 ( 4 ) with SO2. The crystal structure of 3 has been determined; space group P21/n, Z = 4, a = 1 606.1(3), b = 1 019.3(1), c = 3 624.6(5) pm, β = 93.67°, R/Rw = 0.102/0.121.  相似文献   

8.
9.
10.
On the Reactivity of Disilylarsenido Iron Complexes towards Carbonyl Chlorides: The First Arsaalkenyl- and Diacylarsenido Complexes. X-Ray Structure Analysis of Z-[(η5-C5H5)(CO)2Fe? As?C(OSiMe3)(t-Bu)] The reaction of equimolar amounts of (η5-C5H5)(CO)2FeAs(SiMe3)2 ( 1a ) with the carbonyl chlorides RC(O)Cl (R = t-Bu, 2,4,6-Me3C6H2 and 2,4,6-t-Bu3C6H2) yields the arsaalkenyl complexes Z-[(η5-C5H5)(CO)2Fe? As?;C(OSiMe3)R ( 2–4 )]. The diacylarsenido complexes (η5-C5H5)(CO)2Fe? As[C(O)R]2 ( 5, 6 ) are generated by treatment of 1a with two equivalents of pivaloyl chloride or mesitoyl chloride, respectively. The As?C-double bond length of 2 (1.821(2) Å) was determined by single crystal x-ray analysis.  相似文献   

11.
12.
π‐Allyl (η3‐C3H5), a four‐electron donor, was used as a ligand model to replace η5‐C5Me4SiMe3 in DFT calculations on the tetranuclear yttrium polyhydrido complex (η5‐C5Me4SiMe3)4Y4H8 containing a Y4H8 tetrahedral core structure, which may separate the four π‐allyl groups and hence suppress the allyl ligand coupling during the computation. In terms of the calculated core geometry, isomerization energy barrier, charge population, and frontier orbital features of the complex, the η3‐C3H5 ligand model is comparable to η5‐C5H5. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

13.
Syntheses, Structure and Reactivity of η3‐1,2‐Diphosphaallyl Complexes and [{(η5‐C5H5)(CO)2W–Co(CO)3}{μ‐AsCH(SiMe3)2}(μ‐CO)] Reaction of ClP=C(SiMe2iPr)2 ( 3 ) with Na[Mo(CO)35‐C5H5)] afforded the phosphavinylidene complex [(η5‐C5H5)(CO)2Mo=P=C(SiMe2iPr)2] ( 4 ) which in situ was converted into the η1‐1,2‐diphosphaallyl complex [η5‐(C5H5)(CO)2Mo{η3tBuPPC(SiMe2iPr)2] ( 6 ) by treatment with the phosphaalkene tBuP=C(NMe2)2. The chloroarsanyl complexes [(η5‐C5H5)(CO)3M–As(Cl)CH(SiMe3)2] [where M = Mo ( 9 ); M = W ( 10 )] resulted from the reaction of Na[M(CO)35‐C5H5)] (M = Mo, W) with Cl2AsCH(SiMe3)2. The tungsten derivative 10 and Na[Co(CO)4] underwent reaction to give the dinuclear μ‐arsinidene complex [(η5‐C5H5)(CO)2W–Co(CO)3{μ‐AsCH(SiMe3)2}(μ‐CO)] ( 11 ). Treatment of [(η5‐C5H5)(CO)2Mo{η3tBuPPC(SiMe3)2}] ( 1 ) with an equimolar amount of ethereal HBF4 gave rise to a 85/15 mixture of the saline complexes [(η5‐C5H5)(CO)2Mo{η2tBu(H)P–P(F)CH(SiMe3)2}]BF4 ( 18 ) and [Cp(CO)2Mo{F2PCH(SiMe3)2}(tBuPH2)]BF4 ( 19 ) by HF‐addition to the PC bond of the η3‐diphosphaallyl ligand and subsequent protonation ( 18 ) and/or scission of the PP bond by the acid ( 19 ). Consistently 19 was the sole product when 1 was allowed to react with an excess of ethereal HBF4. The products 6 , 9 , 10 , 11 , 18 and 19 were characterized by means of spectroscopy (IR, 1H‐, 13C{1H}‐, 31P{1H}‐NMR, MS). Moreover, the molecular structures of 6 , 11 and 18 were determined by X‐ray diffraction analysis.  相似文献   

14.
Synthesis, Structure, and Reactivity of the Ferrioarsaalkene [(η5‐C5Me5)(CO)2FeAs=C(Ph)NMe2] Reaction of equimolar amounts of the carbenium iodide [Me2N(Ph)CSMe]I and LiAs(SiMe3)2 · 1.5 THF afforded the thermolabile arsaalkene Me3SiAs = C(Ph)NMe2 ( 1 ), which in situ was converted into the black crystalline ferrioarsaalkene [(η5‐C5Me5)(CO)2FeAs=C(Ph)NMe2)] ( 2 ) by treatment with [(η5‐C5Me5)(CO)2FeCl]. Compound 2 was protonated by ethereal HBF4 to yield [(η5‐C5Me5)(CO)2FeAs(H)C(Ph)NMe2]BF4 ( 3 ) and methylated by CF3SO3Me to give [(η5‐C5Me5)(CO)2FeAs(Me)C(Ph)NMe2]‐ SO3CF3 ( 4 ). [(η5‐C5Me5)(CO)2FeAs[M(CO)n]C(Ph)NMe2] ( 5 : [M(CO)n] = [Fe(CO)4]; 6 : [Cr(CO)5]) were isolated from the reaction of 2 with [Fe2(CO)9] or [{(Z)‐cyclooctene}Cr(CO)5], respectively. Compounds 2 – 6 were characterized by means of elemental analyses and spectroscopy (IR, 1H, 13C{1H}‐NMR). The molecular structure of 2 was determined by X‐ray diffraction analysis.  相似文献   

15.
16.
17.
18.
19.
Reaction of [MoCo(CO)5(PPh3)25-C5H5)] (1) with diphenylacetylene in tetrahydrofuran at 50 °C yielded two heterobimetallic compounds, [MoCo(CO)4.(PPh3){μ-PhC ? CPh}(η5-C5H5)] (4) and [MoCo(CO)5{μ-PhC ? CPh} (η5-C5H5)] (5). However, an unexpected product, Co(CO)2(μ-CO)(μ:η24-C4Ph4)Co(CO)2(PPh3) (6), was observed while attempting to grow the crystals for structural determination of 4. The X-ray crystal structure of 6 was determined: triclinic, $ {\rm P}\bar 1 $, a = 11.654(2) Å, b = 12.864(2) Å, c = 13.854(2) Å, α = 89.67(2)°, β = 86.00(2)°, γ= 83.33(2)°, V = 2057.9(6) Å3 Z=2. In 6, two cobalt fragments are at apical and basal positions of the pseudo-pentagonal pyramidal structure, respectively. The electron count for the apical cobalt fragments is 20, which is rather unusual. It is believed that 6 was formed after the fragmentation and recombination of the fragmented species of 4.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号