首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative synthesis of poly(imides) based on benzidine-2,2′-disulfonic acid and dianhydrides of pyromellitic and naphthalene-1,4,5,8-tetracarboxylic acids via the high-temperature polycyclocondensation in m-cresol in the presence of triethylamine has been performed for the purpose of designing proton-exchange membranes for fuel cells. The polymers are shown to be water-soluble with poly(naphthylimide) showing by a much higher hydrolytic stability than poly(pyromellitimide). To render poly(naphthylimide) insoluble in water, copoly(naphthylimide) has been synthesized using 4,4′-bis(4-aminophenoxy)diphehyl sulfone as a comonomer. Copoly(naphthylimides) combine solubility in organic solvents with insolubility in water. These polymers demonstrate high viscosity characteristics and excellent film-forming behavior. They combine excellent thermal stability and hydrolytic resistance with proton conductivity, which is higher than the proton conductivity of Nafion commercial membranes in wide temperature and relative conductivity ranges.  相似文献   

2.
Phenyl-substituted poly(germanosilanes) and poly(germanocarbosilanes) have been synthesized through the Wurtz-Kipping reaction via dechlorination of mixtures of dichlorophenylsilanes (PhSi(R)Cl2, where R = H, Ph, or vinyl) with diphenyldichlorogermane in the presence of an ultradisperse sodium suspension. The polymers thus synthesized have been investigated by X-ray fluorescence analysis; FTIR and UV spectroscopy; and 1H, 13C, and 29Si NMR spectroscopy. The peak maxima in the UV spectra of the polymers dissolved in THF are in the wavelength range of 300–375 nm. Under the effect of UV irradiation with a wavelength of 320–380 nm, photoluminescence emission peaking in the range of 380–470 nm is observed. Size exclusion chromatography indicates that all the (co)polymers under examination are characterized by a narrow GPC curve and their polydispersity indexes are no larger than 1.5. According to dynamic TGA data, the weight loss of the polymers reaches 80% even at 500°C. Owing to formation of branched structures in vinyl-substituted copolymers, the GPC curves widen (the polydispersity index is ~6), while the yield of an inorganic residue at 900°C amounts to 40%.  相似文献   

3.
Degradation of poly(methylphenylsiylene) and poly(di-n-hexylsilylene) was studied by chemical and mechanical methods at ambient and higher temperatures. Purely thermal degradation in solid state starts as a slow process at 150°C and provides soluble and insoluble products which include cyclosilanes as well as various siloxanes. Sonication at ambient temperatures leads to the mechanical degradation of high molecular weight polymers by homolytic cleavage induced by shear forces. No cyclics are formed under these conditions. Polysilanes in the presence of strong nucleophiles degrade exclusively to cyclic oligomers. Rate of this back-biting chain reaction depends on substituents at silicon atom, alkali metal, solvents, and temperature. Electrophiles degrade polysilanes to various α,ω-difunctional oligosilanes. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Polymerization conditions of di-t-butyl fumarate and di-trimethylsilyl fumarate were studied in detail. They cannot be polymerized by either anionic or coordination initiators, but radical and radiation polymerizations are successful. Characterization of poly(di-t-butyl fumarate), obtained thereby, with 1H-NMR spectrum suggests that the backbone of the chain is stiff. From analysis of thermal properties of poly(di-t-butyl fumarate), it is found to be completely converted to poly(fumaric acid) by pyrolysis around 200°C. Poly(di-trimethylsilyl fumarate), on the other hand, can be quantitatively hydrolyzed with acid to the same polyacid, too. The preliminary measurement of the dissociation behaviors of poly(fumaric acid) was done by potentiometric titration, which shows that the titration curves of poly(fumaric acid) are different from those of poly(acrylic acid) and poly(maleic acid).  相似文献   

5.
6.
7.
Thermogelling poly(ε-caprolactone-co-D,L -lactide)–poly(ethylene glycol)–poly(ε-caprolactone-co-D,L -lactide) and poly(ε-caprolactone-co-L -lactide)–poly(ethylene glycol)–poly(ε-caprolactone-co-L -lactide) triblock copolymers were synthesized through the ring-opening polymerization of ε-caprolactone and D,L -lactide or L -lactide in the presence of poly(ethylene glycol). The polymerization reaction was carried out in 1,3,5-trimethylbenzene with Sn(Oct)2 as the catalyst at various temperatures, and the yields were about 96%. The molecular weights and polydispersities (Mw/Mn) by gel permeation chromatography were in the ranges of 5140–6750 and 1.35–1.45, respectively. The differential scanning calorimetry results showed that the melting temperatures of the poly(ε-caprolactone) components were between 30 and 40 °C. By the subtle tuning of the chemical compositions and microstructures of these triblock copolymers, the aqueous solutions underwent sol–gel transitions as the temperature increased, with the suitable lower critical solution temperature in the range of 17–28 °C at different concentrations. Transesterification in the polymerization process generated the redistribution of sequences, which remarkably affected the sol–gel transition temperature. The amphiphilic copolymers formed micelles in aqueous solutions with a diameter of 62 nm and a critical micelle concentration of about 0.032 wt % at 20 °C. Micelles aggregated as the temperature increased, leading to gel formation. The sol–gel transition was studied, with a focus on the structure–property relationship. It is expected to have potential applications in drug delivery and tissue engineering. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4091–4099, 2007  相似文献   

8.
4-Hydroxy-5-nitrophthalimides were produced via nucleophilic aromatic substitution (NAS) of 4,5-dichloro phthalimide substituents by potassium nitrite. The use of a N-phenyl-phthalimide having a protected 4′-hydroxyl group allows concurrent deprotection and nitro reduction to amine to give the 4-hydroxy-5-amino-N-(4′-hydroxyphenyl) phthalimide. This key intermediate is the precursor to a poly (ether-imide-benzoxazole), and is the condensable monomer for a poly (ester-imide-benzoxazole). Benzoxazole monomer formation via condensation with p-fluorobenzoyl chloride afforded 2-(4′-fluorophenyl)-5,6,-N-[4′(-hydroxyphenyl) imide]-benzoxazole, which was polymerized under NAS conditions to produce a poly(ether-imide-benzoxazole) having an endothermic transition at 454°C with weight retention of 90% at 500°C in both air and nitrogen. Solution polycondensation of the 4-hydroxy-5-amino-N-(4′-hydroxyphenyl) phthalimide monomer with isophthaloyl chloride afforded a poly(ester-amide-imide) which was isolated and thermally cyclodehydrated in the solid state under vacuum to give a poly(ester-imide-benzoxazole) having 95% weight retention at 500°C in both air and nitrogen, with no detectable DSC transitions up to 500°C. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
10.
The miscibility of blends of copolymers of different compositions of butyl methacrylate-co-methacrylic acid or styrene-co-methacrylic acid with styrene-co-4-vinylpyridine or butyl methacrylate-co-4-vinylpyridine was studied by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. It was found that these blends were miscible in part as a result of specific favorable interactions between the carboxylic acid and pyridine groups within the polymer chains. Evidence of such interactions was obtained from the single composition-dependent glass transition temperature and the FTIR results.  相似文献   

11.
12.
Poly(hydroxamic acid) in gel or water soluble from was prepared from the reaction of poly(acrylamide) and hydroxylamine in basic aqueous solution (pH > 12) at room temperature. The polymers were composed of 70% hydroxamic acid groups, less than 5% carboxylic acid groups, and 25% unreacted amide groups. The polymers exhibited high affinity to iron(III) and copper(II) in the pH range of 1 to 5 with a high binding rate. A binding of 3 mmol/g for both metals was achieved. Preliminary tests demonstrated the urease inhibitory activity of both linear and crosslinked poly(hydroxamic acids).  相似文献   

13.
Films of poly(ethylacryloylacetate) (PEAA) and poly(acryloylacetone) (PAA) were subjected to UV irradiation (λ = 254 nm) at room temperature. The photoinduced structure transfer from cis-enol onto a diketo forms has been investigated. The structure transfer caused by UV light was found to be slower than for the corresponding process in solution. The spectral investigations (UV, IR) showed reversible process of photoketonization. The results were analyzed in terms of the model for the participation of the trans-enol form in the process of the ketonization. Based on the results obtained, some general conclusions were made about the organization of the units in the polymer chain. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3683–3688, 1997  相似文献   

14.
Here we report the preparation and characterization of nanostructured thermo-responsive poly(acrylamide) (PAM)-based hydrogels. The addition of slightly crosslinked poly(N-isopropylacrylamide) (PNIPA) nanogels to AM reactive aqueous solution produces nanostructured hydrogels that exhibit a volume phase transition temperature (TVPT). Their swelling kinetics, TVPT's and mechanical properties at the equilibrium-swollen state (Heq) are investigated as a function of the concentration of PNIPA nanogels in the nanostructured hydrogels. Nanostructured hydrogels with PNIPA nanogels/AM mass ratios of 20/80 and above exhibit higher Heq and longer time to reach the equilibrium swelling than those of the conventional PAM hydrogels. However, the PNIPA nanogels possess thermo-responsive character missing in conventional PAM hydrogels. The TVPT of nanostructured hydrogels depends on PNIPA nanogel content but their elastic and Young moduli are larger than those of conventional hydrogels at similar swelling ratios. Swelling kinetics, TVPT, and mechanical properties are explained in terms of the controlled in-homogeneities introduced by the PNIPA nanogels during the polymerization.  相似文献   

15.
16.
The thermal behaviour of three aromatic polymers, poly(3,3-dioxy-4,4-diphenylmethane) (POA), poly(2,2-m-phenylene-5,5-dibenzoxazolemethane) (PBO) and a commercial poly-(phenyleneisophthalamide) (Phenylon) was studied by thermal analysis, i.e. DSC and TG. PBO was formed by the progressive thermocyclization of POA. By transforming POA into PBO the thermal stability was increased proportionally to the degree of cyclization, due to the stiffening of the polymer chain. PBO was found to be more thermally stable than Phenylon. The activation energies of the desorption of moisture, cyclization and thermal degradation of the polymers in both nitrogen and air were determined from non-isothermal TG data.  相似文献   

17.
The poly(amidoamine) dendrimers having terminal isobutyramide (IBAM) groups were prepared by the reaction of isobutyric acid and the amine-terminated poly(amidoamine) dendrimers with generations (G) of 2 to 5 by using a condensing agent, 1,3-dicyclohexylcarbodiimide. 1H and 13C NMR revealed that an IBAM group was attached to essentially every chain end of the dendrimers. While the IBAM-terminated G2 dendrimer was soluble in water, the IBAM-terminated G3, G4, and G5 dendrimers exhibited the lower critical solution temperatures (LCSTs) at 75, 61, and 43 degrees C, respectively. Because the density of the terminal IBAM groups in the periphery of the dendrimer progressively increases with increasing dendrimer generation, the interaction of the IBAM groups might take place more efficiently, resulting in a remarkable decrease in the LCST. In addition, attachment of IBAM groups to poly(propylenimine) dendrimers could give the temperature-sensitive property, indicating that this is an efficient method to render dendrimers temperature sensitive.  相似文献   

18.
Poly[2-(tert-butoxycarbonyl)-1,4-phenylene] ( 2 ) was prepared by the Ni-catalyzed polymerization of tert-butyl 2,5-dichlorobenzoate ( 1 ). The microstructure of polymer 2 was probably alternating head-to-head and tail-to-tail. This polymer was soluble in dipolar aprotic solvents, chloroform, tetrahydrofuran, and dichloromethane. Polymer 2 was saponified easily by thermal or acid treatment to yield poly[2-carboxy-1,4-phenylene] ( 3 ). Decarboxylation of polymer 3 in quinoline in the presence of copper(II) oxide produced poly(p-phenylene) (PPP) ( 4 ).  相似文献   

19.
Complex formation between polymethacrylic (PMAA) and polyacrylic acids, and star-shaped poly(ethylene glycol) prepared by ethoxylation of pyrogallol (Pyr–PEG) has been studied viscometrically and by potentiometric titration in water solution. The competitive ability of Pyr–PEG and of the derivatives of the ethoxylation of phenol and hydroquinone in complex formation with PMAA has been compared by UV spectroscopy. Pyr–PEG turns out to be the weakest competitor because of its chemical structure. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
The miscibility and phase behavior in blends of PVC with poly(methyl-co-hexyl acrylate)[MHA] and poly(methyl-co-2 ethyl hexyl acrylate)[MEH] were studied. It was found that PVC is miscible with MHA copolymers having a HA volume fraction from 0.30 to 0.92 and MEH copolymers having an EH volume fraction from 0.30 to 0.83 at 100°C. By applying the mean field theory to the phase diagrams of these blend systems, segmental interaction parameters which represent the binary interaction between different monomer units were estimated. The calculated values reflect the fact that the miscibility window observed for PVC/MHA and PVC/MEH blend systems was attributed to the effect of repulsion between different monomer units within the copolymer. To investigate the effect of specific interaction on the miscibility for these blend systems, an attempt was also made to describe the blend interaction parameter as a function of polar group concentration in the acrylate copolymer. The blend interaction parameter values exhibit a u-shaped curve as a function of the weight fraction of C?O group in the copolymer, and the lowest blend interaction parameter value appears at about 0.24 C?O weight fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号