首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Analytical transmission electron microscopy was applied to characterize the size, shape, real structure, and, in particular, the composition of different semiconductor quantum structures. Its potential applicability is demonstrated for heterostructures of III-V semiconducting materials and II-VI ones, viz. (In,Ga)As quantum wires on InP and (In,Ga)As quantum dots on GaAs both grown by metal organic chemical vapor deposition, and CdSe quantum dots on ZnSe grown by molecular beam epitaxy. The investigations carried out show that the element distribution even of some atomic layers can be detected by energy-dispersive X-ray spectroscopy, however, exhibiting a smeared profile. Contrary to that, sub-nanometre resolution has been achieved by using energy-filtered transmission electron microscopy to image quantum dot structures.  相似文献   

2.
Chien FC  Kuo CW  Chen P 《The Analyst》2011,136(8):1608-1613
The blinking phenomena of the quantum dots have been utilized in the super-resolution localization microscopy to map out the locations of individual quantum dots on a total internal reflection microscope. Our result indicated that the reconstructed image of quantum dots agreed with the topographic image measured by atomic force microscopy. Because of the superior optical properties of the quantum dots, the high localization resolution can be achieved in the shorter acquisition time with larger detected photon numbers. When the cells were labeled with quantum dots, the sub-cellular structures could be clearly seen in the reconstructed images taken by a commercial microscope without using complicated optical systems, special photo-switchable dye pairs or photo-activated fluorescence proteins.  相似文献   

3.
Hybrid quantum‐dot‐sensitized solar cells show promising novel optoelectronic properties. An adequate design of such cells requires a deep understanding of the characteristics of each component, including their interactions. In this context, the electrochemical properties of two different hole‐transporting materials (HTMs) and their chemical interactions with trioctylphosphine‐capped CdSe quantum dots are investigated to evaluate their potential use in hybrid quantum‐dot‐sensitized solar cells. Tris[4‐(thien‐2‐yl)phenyl]amine (TTPA) and tris[4‐(selen‐2‐yl)phenyl]amine (TSePA) are studied in the solid state as thin films deposited on a conducting substrate. Spectroelectrochemical studies evidence both solid‐state electropolymerization and doping. Upon addition of TSePA or partially polymerized TTPA to a colloidal solution of trioctylphosphine‐capped CdSe quantum dots, the steady‐state photoluminescence is quenched. This suggests that the quantum dots and the HTM strongly interact, probably through an excited‐state charge‐transfer mechanism. The combination of all these pieces of information indicates that polymerized TTPA and TSePA are potential candidates as HTMs for hybrid quantum‐dot‐sensitized solar cells.  相似文献   

4.
A novel approach to preparing PbSe quantum dots in a high-boiling-point solvent (paraffin liquid) was studied. PbSe quantum dots obtained were transferred from the organic phase to aqueous phase. The PbSe samples were characterized by transmission electron microscopy, X-ray diffraction, and energy dispersive X-ray analysis, which demonstrated that high-quality PbSe quantum dots with regular shape and uniform size were prepared. The mechanism of PbSe quantum dot formation was briefly discussed. The text was submitted by the authors in English.  相似文献   

5.
Colloidal quantum dots display remarkable optical and electrical characteristics with the potential for extensive applications in contemporary nanotechnology. As an ideal instrument for examining surface topography and local density of states (LDOS) at an atomic scale, scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) has become indispensable approaches to gain better understanding of their physical properties. This article presents a comprehensive review of the research advancements in measuring the electronic orbits and corresponding energy levels of colloidal quantum dots in various systems using STM and STS. The first three sections introduce the basic principles of colloidal quantum dots synthesis and the fundamental methodology of STM research on quantum dots. The fourth section explores the latest progress in the application of STM for colloidal quantum dot studies. Finally, a summary and prospective is presented.  相似文献   

6.
There has been a lack of quick, simple and reliable methods for determination of nanoparticle size. An investigation of the size of hydrophobic (CdSe) and hydrophilic (CdSe/ZnS) quantum dots was performed by using the maximum position of the corresponding fluorescence spectrum. It has been found that fluorescence spectroscopy is a simple and reliable methodology to estimate the size of both quantum dot types. For a given solution, the homogeneity of the size of quantum dots is correlated to the relationship between the fluorescence maximum position (FMP) and the quantum dot size. This methodology can be extended to the other fluorescent nanoparticles. The employment of evolving factor analysis and multivariate curve resolution-alternating least squares for decomposition of the series of quantum dots fluorescence spectra recorded by a specific measuring procedure reveals the number of quantum dot fractions having different diameters. The size of the quantum dots in a particular group is defined by the FMP of the corresponding component in the decomposed spectrum. These results show that a combination of the fluorescence and appropriate statistical method for decomposition of the emission spectra of nanoparticles may be a quick and trusted method for the screening of the inhomogeneity of their solution.  相似文献   

7.
Well defined tetrahedral cadmium sulfide nanocrystals were made in a rational way by organometallic chemical synthesis. Due to the fair degree of the ionic character in Cd—S bond, the sulfide S2– can be replaced by the organothiolate RS without disrupting the CdS lattice structure. These ligands were delicately chosen to fabricate anisotropically capped nanocrystals. During solvent evaporation, these smart dots have the property to self-connect in a head-to-tail alignment leading to a new fibrous polymeric dot material. These quantum microcrystallites can be processed to make powder, free standing dots or optically transparent and anisotropic films. Optical spectroscopy, X-ray diffraction and electron microscopy have been used to characterize this organized quantum dot array.  相似文献   

8.
Highly conjugated multiwalled carbon nanotube-quantum dot heterojunctions were synthesized by ethylene carbodiimide coupling procedure. The functional multiwalled carbon nanotube with carboxylic groups on sidewall could react with the amino group of L-cysteine capped CdSe quantum dots and then resulted in nanotube-quantum dot heterojunctions. Scanning electron microscopy was used to characterize the heterojunctions.  相似文献   

9.
谷胱甘肽作稳定剂水相合成CdTe/CdS核壳型量子点,以EDC/NHS为活化剂对黄曲霉毒素B1(AFB1)抗体进行量子点标记,然后用牛血清蛋白封闭抗体。通过对量子点和标记抗体性能的研究发现,CdTe/CdS核壳型量子点荧光的强度和稳定性较裸壳的CdTe量子点分别提高了4倍和2倍以上。由于谷胱甘肽碳链较长,量子点对抗体尤其是活性位点处的空间构型影响减少,从而改善了量子点标记抗体的稳定性和活性,CdTe/CdS标记的AFB1抗体与AFB1免疫前后荧光强度变化显示抗体至少可以稳定6 d。基于谷胱甘肽稳定的高性能CdTe/CdS量子点,建立了一种荧光免疫检测黄曲霉毒素B1的新方法。AFB1浓度在0.68~40 pmol/L之间荧光强度与浓度呈线性关系,相关系数(R2)为0.9914,检出限为0.3 pmol/L。方法已成功应用于米醋样品中痕量黄曲霉毒素B1的测定。  相似文献   

10.
We report a new family of oligomeric alkyl phosphine ligands for nanocrystal quantum dots. These oligomeric phosphines show effective binding affinity to quantum dot surfaces. They form thin and secure organic shells that stabilize quantum dots in diverse environments including serum and polymer matrices. They maintain the initial as-grown photoluminescence quantum yield of the quantum dots and enable homogeneous incorporation into various matrices. They present a chemically flexible structure that can be used for further chemistry, such as cross-linking, copolymerization, and conjugation to biomolecules.  相似文献   

11.
In the world of biology, "self-assembly" is the ability of biological entities to interact with one another to form supramolecular structures. One basic group of self-assembled structures is peptide nanotubes (PNTs). However, the self-assembly mechanism, with its special characteristics, is not yet fully understood. An exceptional quantum-confined approach is shown here for the self-assembly mechanism in bio-inspired materials. We found the elementary building block of the studied PNT, which is self-assembled from short peptides composed of two phenylalanine residues, to be 0D-quantum-confined (can be related to confinement in 3D), also called a quantum dot (QD). This elementary building block can further self-assemble to a PNT formation. It has been observed that the assembly process of dots to tubes and the disassembly process of tubes to dots are reversible. We further show that a similar dipeptide can also self-assemble to a QD-like structure, with different dimensions. The presented peptide QD structures are nanometer-sized structures, with pronounced exciton effects, which may promote the use of an entirely new kind of organic QDs.  相似文献   

12.
CdSe quantum dots are the most studied Cd-based quantum dots with their high quantum yield, high photostability, narrow emission band, and easy synthesis procedure. They are frequently used to develop light emitting diode (LED) due to their unique photophysical properties; however, their narrow emission band causes a challenge to design white LEDs because white light emission requires emission in multiple wavelengths with broad emission bands. Here in this study, we developed CdSe quantum dots with a narrow band-edge emission band and broad defect-state emission band through a modified two-phase synthesis method. Our results revealed that defect-state emission is directly linked to the surface of quantum dots and can be excited through exciting surfactant around the quantum dot. The effect of surfactant on emission properties of CdSe quantum dots diminished upon growing a shell around CdSe quantum dots; as a result, surface-dependent defect-state emission cannot be observed in gradient heterogeneous alloyed CdSxSe1-x quantum dots.  相似文献   

13.
New amphiphilic polyhedral oligomeric silsesquioxanes (POSSs) were synthesized, and their monolayer behavior on a water surface and Langmuir-Blodgett (LB) film formation were studied. Two kinds of amphiphilic POSS molecules, which have two or four di(ethylene glycol) units (2OH-DDSQ and 4OH-DDSQ, respectively), were synthesized by direct hydrosilylation of di(ethylene glycol) vinyl ether with double-decker shaped polyhedral oligomeric silsesquioxanes (DDSQs). Surface pressure (π)-area (A) isotherms and Brewster angle microscope (BAM) measurements indicated that both amphiphilic DDSQs form a stable monolayer at the air-water interface. In addition, 4OH-DDSQ can be deposited on a solid substrate by the LB technique. Atomic force microscope (AFM) images of a one-layer 4OH-DDSQ film showed a homogenous uniform surface on a hydrophilic silicon substrate, whereas nanometer scale dots were formed on a hydrophobic silicon substrate. Multilayer deposition on a hydrophobic substrate resulted in an increase of dot size with increasing deposition number of layers. Moreover, homogenous multilayer films with a few voids were obtained on a hydrophilic substrate. The results indicate that 4OH-DDSQ is a good candidate for preparing hybrid nanoassemblies.  相似文献   

14.
尹海峰 《物理化学学报》2016,32(6):1446-1452
基于含时密度泛函理论,研究了随着间距改变时硅烯量子点二聚物的等离激元激发特性。沿垂直于硅烯所在平面方向激发时,在一定间距范围内,硅烯量子点二聚物中形成了长程电荷转移激发模式。参与长程电荷转移激发的π电子主要在两个量子点之间运动。该等离激元模式随着间隙的减小发生蓝移。此外,在不同间距时,体系中还有两个等离激元共振带,分别位于7和15 eV附近。沿平行于硅烯所在平面方向激发时,由于两个量子点之间的耦合,在低能  相似文献   

15.
Single-molecule quantum-dot fluorescence resonance energy transfer.   总被引:4,自引:0,他引:4  
Colloidal semiconductor quantum dots are promising for single-molecule biological imaging due to their outstanding brightness and photostability. As a proof of concept for single-molecule fluorescence resonance energy transfer (FRET) applications, we measured FRET between a single quantum dot and a single organic fluorophore Cy5. DNA Holliday junction dynamics measured with the quantum dot/Cy5 pair are identical to those obtained with the conventional Cy3/Cy5 pair, that is, conformational changes of individual molecules can be observed by using the quantum dot as the donor.  相似文献   

16.
Size-correlated single-molecule fluorescence measurements on CdSe quantum dots functionalized with oligo(phenylene vinylene) (OPV) ligands exhibit modified fluorescence intermittency (blinking) statistics that are highly sensitive to the degree of ligand coverage on the quantum dot surface. As evidenced by a distinct surface height signature, fully covered CdSe-OPV nanostructures (approximately 25 ligands) show complete suppression of blinking in the solid state on an integration time scale of 1 s. Some access to dark states is observed on finer time scales (100 ms) with average persistence times significantly shorter than those from ZnS-capped CdSe quantum dots. This effect is interpreted as resulting from charge transport from photoexcited OPV into vacant trap sites on the quantum dot surface. These results suggest exciting new applications of composite quantum dot/organic systems in optoelectronic systems.  相似文献   

17.
We correlate the electronic coupling between quantum dots and the transport gap of nanoparticle-passivated Si substrates. We vary the length of the stabilizers of CdS nanoparticles, which in turn alters the particle-to-particle separation and hence the electronic coupling between them. We also control the electronic coupling using time-restricted electrostatic-assembly of quantum dots, using short periods of time so that an incomplete monolayer or a sub-monolayer of CdS forms. In such a sub-monolayer, the nanoparticles remain isolated from each other with a controllable particle-to-particle separation. From electronic absorption spectroscopy of multilayer films and atomic force microscopy of a monolayer, we evidenced sub-monolayer formation in the controlled electrostatic assembly process. We measure the current-voltage characteristics of nanoparticle-passivated substrates with a scanning tunnelling microscope; we show that the transport gap of nanoparticle-passivated substrates depends on the electronic coupling between CdS particles in the monolayer.  相似文献   

18.
Semiconductor nanocrystal quantum dots have been the subject of extensive investigations in different areas of science and technology in the past years. In particular, there are few studies of magic-sized quantum dots (MSQDs), even though they exhibit features such as extremely small size, fluorescence quantum efficiency, molar absorptivity greater than traditional QDs, and highly stable luminescence in HeLa cell cultures, thereby enabling monitoring of biological or chemical processes. The present study investigated the electrochemical behavior of free CdSe/CdS MSQDs using glassy carbon electrode and CdSe/CdS MSQDs immobilized on a gold electrode modified with a self-assembled cyclodextrin monolayer. The MSQDs showed two peaks in aprotic medium. The functionalized film modifier was prepared and characterized by means of cyclic voltammetry and electrochemical impedance spectroscopy using ferricyanide ions as a redox probe. The prepared modified electrode exhibited a stable behavior. The proposed method was successfully applied to encapsulation studies of mangiferin, a natural antioxidant compound, and cyclodextrin associated with the quantum dot, and the response was compared with that of the modified electrode without QD. The fluorescence study revealed that CdSe/CdS quantum dots emit blue light when excited by an optical source of wavelength of 350 nm and a significant increase in fluorescence and absorbance intensity is observed from the core-shell CdSe/CdS MSQDs when quantities of mangiferin are added to the solution containing thiolated cyclodextrin. CdSe/CdS MSQDs are optically and electrochemically sensitive and can be used for the detection and interaction of compounds encapsulated in cyclodextrin.  相似文献   

19.
Using ab initio calculations, we have studied the influence of optical activation on functionalization reactions of silicon quantum dots with unsaturated hydrocarbons. We find that the energy barrier for the replacement of silicon-hydrogen with silicon-carbon bonds is dramatically reduced if the silicon dot is optically excited. These results provide an explanation for recent experiments on optically excited porous silicon. In addition, our calculations point at the existence of an intermediate spin-polarized state formed by the dot and an alkene or alkyne, upon relaxation after absorbing a photon. This state could be detected experimentally, by, for example, electron spin resonance measurements. Based on the results of our calculations as a function of the dot size, varied from 0.8 to 1.5 nm, we propose that light activated reactions could be used to functionalize and size select silicon quantum dots at the same time.  相似文献   

20.
Photoactivatable organic fluorophores and fluorescent proteins have been widely adopted for cellular imaging and have been critical for increasing temporal and spatial resolution, as well as for the development of superresolution microscopy techniques. At the same time, semiconducting nanocrystal quantum dots (QDs) have shown superior brightness and photostability compared to both organic fluorophores and proteins. As part of our efforts to develop nanoparticles with novel optical properties, we have synthesized caged quantum dots, which are nonluminescent under typical microscopic illumination but can be activated with stronger pulses of UV light. We show that ortho-nitrobenzyl groups efficiently quench QDs of different compositions and emissions and can be released from the nanoparticle surface with UV light, both in solution and in live cells. This caging is dependent on the emission of the QD, but it is effective through the visible spectrum into the nIR, offering a large array of new colors for photoactivatable probes. Like organic and protein-based photoactivatable probes, caged QDs can confer increased spatial and temporal resolution, with the added brightness and photostability of QDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号