首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
目标检测是计算机视觉的基础任务之一,其主要任务是对图像中的目标进行分类和定位。小样本目标检测的目的就是利用极少数的训练样本实现对目标的检测,从而减少繁杂的标注工作,并实现在只有少量样本场景下的应用。现有的小样本目标检测方法主要包括基于孪生神经网络的方法和基于微调的方法,这些方法通过利用现有的包含大量样本的基类数据集和包含少量样本的小样本数据集的训练,使模型实现对小样本类别的分类和定位。重点调研了基于孪生神经网络的双分支小样本目标检测方法,简要介绍了基于微调的小样本目标检测方案,分析了这些方案的优缺点,指出现有的小样本目标检测方案虽不成熟,模型精度有待提升,性能评估方案也有待完善,但却有着十分广阔的应用前景,未来若能通过深入研究解决小样本目标检测的现有问题,其精度必将赶超传统目标检测。  相似文献   

2.
针对孪生网络在小样本数据集上的应用和优化问题,提出一种基于双重相似度计算和孪生网络的小样本实例分割模型。首先对传统孪生网络进行改进,将孪生网络与残差网络相结合,构建作为本模型骨干网络的孪生残差网络;然后在相似度计算阶段构建了具有两个子网络的双重相似度计算网络,分别用于计算场景图像与参考图像的空域相似度和频域相似度,并进行相似度特征融合;最后通过实例分割网络获得分割结果。此外,还引入Focal Loss损失函数来解决模型训练过程中正、负样本以及难、易样本的不均衡问题。在COCO数据集上的实验结果表明,本文方法的小样本实例分割性能要优于对比算法。  相似文献   

3.
深度学习技术在目标检测领域取得了显著的成果,但是相关模型在样本量不足的条件下难以发挥作用,借助小样本学习技术可以解决这一问题。本文提出一种新的小样本目标检测模型。首先,设计了一种特征学习器,由Swin Transformer模块和PANET模块组成,从查询集中提取包含全局信息的多尺度元特征,以检测新的类对象。其次,设计了一种权重调整模块,将支持集转换为一个具有类属性的权重系数,为检测新的类对象调整元特征分布。最后在ImageNet-LOC、PASCAL VOC和COCO三种数据集上进行实验分析,结果表明本文提出的模型在平均精度、平均召回率指标上相对于现有的先进模型都有了显著的提高。  相似文献   

4.
近年来,基于孪生网络的目标跟踪算法由于在跟踪精度和跟踪效率之间能够实现良好的平衡而备受关注。通过对基于孪生网络的目标跟踪算法的文献进行归纳,对现有孪生网络目标跟踪算法进行了全面总结,对孪生网络的2个分支结构进行了讨论。首先,介绍了基于孪生网络目标跟踪的基本架构,重点分析了孪生网络中主干网络的优化,以及主干网络的目标特征提取问题。其次,对目标跟踪过程中的分类和回归2个任务展开讨论,将其分为有锚框和无锚框2大类来进行分析研究,通过实验对比,分析了算法的优缺点及其目标跟踪性能。最后,提出未来的研究重点:1)探索背景信息训练,实现场景中背景信息传播,充分利用背景信息实现目标定位。2)目标跟踪过程中,目标特征信息的更加丰富化和目标跟踪框的自适应变化。3)从帧与帧之间全局信息传播,到目标局部信息传播的研究,为准确定位跟踪目标提供支撑。  相似文献   

5.
无人机技术的不断成熟,使得搭载高效视觉系统的无人机应用也更加广泛。针对无人机航拍图像中小目标较多、分辨率低等原因导致的检测精度不高的问题,提出了一种改进RetinaNet的无人机航拍目标检测算法。算法针对特征图中小目标信息提取不足的问题,设计了多阶段特征融合方法,并将其与注意力机制串联设计了特征挖掘模块,可以在浅层特征图中融入深层的语义信息,丰富小目标特征;设计了基于中心点检测的无锚框(Anchor-free)方法,网络通过对中心点的回归来定位目标,而不是通过固定大小的锚框去匹配,这样做可以使网络对小目标的回归更加灵活,提高了算法的整体性能;且通过深度可分离卷积方法对网络进行轻量化设计,以压缩模型大小并提高检测速度。实验结果表明,改进算法较原RetinaNet算法平均精度提升了8.5%,检测速度提升了6帧/s,且与其他先进算法相比也具有性能优势,达到了检测精度与检测速度的均衡。  相似文献   

6.
针对传统的遥感图像目标检测中面临的小样本以及目标样本分布不均衡等问题, 提出了一种基于改进的卷积神经网络(convolutional neural network, CNN)的遥感图像小样本目标检测算法. 首先, 该算法利用 $K$ 近邻($K$-nearest neighbor, kNN)回归分别对每个点和卷积层提取特征构建局部邻域; 同时, 通过最大池化聚合所有局部特征进行全局特征表示; 最后, 采用全连接层与缩放指数型线性单元(scaled expected linear unit, SELU)激活函数计算各类别对应的概率并分类. 实验结果表明, 该算法能够更有效地融合局部特征, 提高了遥感图像小样本目标识别与检测的精度, 同时保持信息的非局部扩散.  相似文献   

7.
基于卷积神经网络的小目标交通标志检测算法   总被引:1,自引:0,他引:1  
PVANet(performance vs accuracy network)卷积神经网络用于小目标检测的检测能力较弱.针对这一瓶颈问题,采用对PVANet网络的浅层特征提取层、深层特征提取层和HyperNet层(多层特征信息融合层)进行改进的措施,提出了一种适用于小目标物体检测的改进PVANet卷积神经网络模型,并在TT100K(Tsinghua-Tencent 100K)数据集上进行了交通标志检测算法验证实验.结果表明,所构建的卷积神经网络具有优秀的小目标物体检测能力,相应的交通标志检测算法可以实现较高的准确率.  相似文献   

8.
为了解决电力施工现场中安全帽佩戴情况以及危险区域行人入侵检测问题,提出一种基于改进Mask R-CNN模型的目标检测方法。首先依据迁移学习策略对Mask R-CNN主干网络进行参数初始化,以提取图像基本特征;然后引入特征金字塔结构进行自下而上的特征图提取,完成多尺度特征融合;接着,通过多尺度变换方法对区域推荐网络进行调整,获取锚点进行回归计算完成检测实验;最终对结果进行分析评价,多目标平均准确率达到了95.22%。将改进后的Mask R-CNN模型用于监控视频分析,针对监控视频像素过低问题,加入拉普拉斯算法锐化边缘,精准率提高到90.9%,验证了拉普拉斯算法对低质量监控视频检测的有效性。  相似文献   

9.
作为典型的一体化卷积神经网络,YOLOv3模型的网路传输途径简单,检测速度相对较快,但检测精度较低.当遇到新的目标在训练数据集中存在的样本较少时,模型检测会更加不准确,甚至会出现检测不到的情况.本文基于与模型不相关的元学习算法(MAML)改进了YOLOv3主干网络的结构,使其具有内循环和外循环的梯度下降,在初始参数基础...  相似文献   

10.
针对传统Faster-RCNN方法中候选区域生成网络(RPN)模块在进行目标检测时对目标特征提取不够充分的问题,提出一种基于改进RPN的Faster-RCNN网络SAR图像车辆目标检测方法.首先基于VGG-16网络提取出图片的多层特征,然后利用卷积核对最深的3个特征层作进一步的特征提取和正则化处理,最后对处理后的3个特...  相似文献   

11.
现有深度学习目标检测算法往往只利用了卷积神经网络(convolutional neural network,CNN)提取的深层特征进行判别,对浅层特征利用不足。为了利用浅层的细节信息来提高最终所提取的特征层信息的丰富性,提出了一种基于区域生成网络(region proposal network,RPN)结构的多层特征融合目标检测算法,该算法通过深度卷积网络获取不同层次的特征,并将浅层特征与深层次特征进行融合来获得更加丰富的提取特征,以提升检测模型的性能。以Image Net上的公开数据voc2007为实验对象,以Faster RCNN为基础的检测框架进行改进,最终改进后的平均精度均值(mean average precision,mAP)相比于Faster RCNN有所提升,表明研究结果提升了目标检测模型的准确度。  相似文献   

12.
针对跟踪过程中因尺度变化、遮挡及运动模糊等造成的目标定位不准确问题,在SiamFC(fully-convolutional siamese network)的跟踪框架基础上提出了一种具有高置信度模板更新机制的深层孪生网络目标跟踪算法.首先,主干网络采用ResNet-50残差网络进行特征提取,并融合多层特征图进行目标预测;其次,为避免模板频繁更新带来的模板漂移问题,构建了高置信度的模板更新模块.在OTB100数据集上的实验结果表明,相比基准算法,文中算法的跟踪成功率和精确度分别提高了3.4%和2.6%;在多种挑战因素下的对比实验表明,文中算法可以较好地抵抗目标遮挡、尺度变化、运动模糊等多种复杂因素带来的影响,有很好的鲁棒性.  相似文献   

13.
为了减轻电力无线专网系统因网络业务增多而带来的网络攻击以及异常流量入侵的安全事故隐患,提出了一种基于注意力机制的卷积-长短期记忆网络(convolution-long short-term memory network based on attention mecha-nism,AMCNN-LSTM)模型.该模型为避免序列特征稀疏分布的问题,采用卷积神经网络(convolutional neural net-work,CNN)提取时间序列数据特征并转化为维度固定的稠密向量;为防止记忆丢失和梯度分散问题,使用融合注意力机制的CNN单元来捕捉重要的时间序列细粒度特征;将CNN提取局部特征与长短期记忆网络(long short-term memory network,LSTM)提取序列特征的优势相结合,对电力接入专网流量数据进行异常检测.通过在电力网真实数据集上实验表明,基于注意力机制的算法能够在150轮次迭代下达到89.14%的召回率及89.67%的综合F-meas-ure得分.所提出的模型能够及时、准确地检测电力网络异常流量,有效提高检测效率及准确度.  相似文献   

14.
大熊猫个体识别对研究大熊猫的种群数量非常重要,大熊猫面部检测是基于面部图像的大熊猫个体识别方法中的首要关键步骤。针对现有的大熊猫面部检测方法精确度不高的问题,提出基于VGGNet-16改进网络结构的多尺度大熊猫面部检测方法。首先,以VGGNet-16网络结构为基础,通过增加残差结构与BN层,降低卷积层通道数,并采用LeakyRelu激活函数等改进,构建一个新的特征提取主干网络。其次,将一个3尺度的特征金字塔网络结构与SPP结构结合用于目标检测。最后,使用深度分离卷积结构替代常规卷积结构。实验结果表明,提出的大熊猫面部检测方法在测试集上能够达到99.48%的mAP,检测性能优于YOLOv4。  相似文献   

15.
在电力线无人机自动巡检中,电力线边缘检测对提高输电线路检测精度有重要作用。目前,常用的RCF(Richer Convolutional Features for edge detection)算法在复杂背景下检测电力线时存在边缘模糊、在较低阶段产生的特征图包含太多噪声并在融合特征图时丢失多尺度信息等问题。对此,本文对RCF算法进行改进:1)使用具有平移不变性的下采样技术增强模型的鲁棒性;2)在RCF主干网络中引入CBAM(Convolutional Block Attention Module)机制,提高模型对电力线特征的表达能力;3)在RCF的侧输出网络中加入级联网络,借助基于通道注意力机制的多尺度特征融合模块对特征图进行融合,从而获得更优异的细节保持效果。实验结果表明:改进模型的最优数据集规模(Optimal Dataset Scale)、最佳图像比例(Optimal Image Scale)和平均精度(Average Precision)分别提高了0.7%、1.3%和1.7%,改进模型的检测结果噪声数量少、电力线更加清晰准确。  相似文献   

16.
车辆信息检测是车型识别在智慧交通领域中的首要任务。针对现有的车辆信息检测技术在检测速度、精度以及稳定性方面存在的问题,提出了基于YOLOv3的深度学习目标检测算法——YOLOv3-fass。该算法以DarkNet-53网络结构为基础,删减了部分残差结构,降低了卷积层的通道数,添加了1条下采样支路和3个尺度跳连结构,增加了一个检测尺度,并通过K-均值聚类与手动调节相结合的方法计算出12组锚框值。最后通过迁移学习机制对YOLOv3-fass算法进行微调。在自研的车辆数据集上,YOLOv3-fass算法与YOLOv3、YOLOv3-tiny、YOLOv3-spp算法以及具有ResNet50和DenseNet201经典网络结构的算法做了对比实验,结果表明YOLOv3-fass算法能够更精准、高效、稳定地检测到车辆信息。  相似文献   

17.
无人驾驶车辆在结构化道路中需要通过车道线判断自身位置,为提高其检测的实时性与准确性,本文提出一种利用改进SegNet网络算法与连通域约束相结合的方法实现车道线检测识别。将对称的SegNet网络算法改为非对称结构对车道线作逐像素提取:利用卷积与池化提取车道线特征,摒弃传统的车道线聚类过程,利用二值化图像结合连通域约束与关联对车道特征点进行分类,最后对相同类别的车道特征点进行车道线拟合。该算法在香港中文大学的 CULane 数据集和图森未来的TuSimple数据集上进行了训练与测试,该算法对车道分割准确、实时处理能力优秀,检测识别效果优于传统SegNet网络算法,其平均检测精度为 94.60%,每帧检测耗时提升53毫秒。  相似文献   

18.
上海电网发电可靠性分析   总被引:1,自引:1,他引:0  
发电系统的可靠性直接关系到电网运行的安全性。应用电力不足概率(Loss of Load Probability,LOLP)对上海电网的发电可靠性作了较详细的分析,并提出了提高上海电网发电可靠性的建议。  相似文献   

19.
分布式拒绝服务攻击(DDoS)是如今常见的网络威胁之一,DDoS攻击易被发动却很难追踪与防范.在神经网络快速算法基础上,首先系统分析国内外DDoS攻击检测理论、方法与大量数据集,构建了基于数据包长度,数据包发送时间间隔以及数据包长度变化率等六项特征的攻击流量特征模型;其次通过大量尝试提出对神经网络误差调整参数进行优化的方法;最后基于加州大学洛杉矶分校数据集(UCLA CSD Packet Traces)进行了参数改进前后的攻击检测对比实验.实验表明,本文提出的方法能有效提高DDoS攻击检测率,且具有较好的泛化能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号