首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
曾小妮  王卫宁 《化学通报》2007,70(10):777-781
用太赫兹(THz)时域光谱技术研究了室温条件下的萘醌及其衍生物1,2-萘醌、1,2-萘醌-4-磺酸钠、甲萘醌、白花丹素、胡桃醌的光谱特征,得到了各自的吸收谱和折射率。结果表明,萘醌及其衍生物在此波段有不同的吸收特征,利用太赫兹时域光谱能够鉴别分子结构存在微小差别的化合物。在对样品的吸收谱进行比较的基础上,讨论了分子结构和分子间晶格振动与THz光谱特征吸收的关系。  相似文献   

2.
常见五元糖的太赫兹时域光谱   总被引:4,自引:0,他引:4       下载免费PDF全文
利用基于飞秒超快激光的太赫兹时域光谱(terahertz time domain spectroscopy, THz-TDS)对D-木糖、D-核糖、D-阿拉伯糖、D-来苏糖及相关的五元糖进行了研究, 得到了它们在0.1~2.0 THz波段的THz-TDS吸收谱图. 不同糖类化合物的吸收谱表现出明显的特征, 表明THz-TDS技术可以分辨化合物结构上的微小差异, 可以应用于物质检测与分析. 同时还研究比较了不同旋光性五元糖的THz-TDS光谱.  相似文献   

3.
太赫兹时域光谱技术在化学领域中应用的新进展   总被引:1,自引:0,他引:1  
随着超快激光技术的发展及其人们对太赫兹(THz)电磁波波段及与脉冲光源认识的进一步深入,太赫兹时域光谱(THz-TDS)技术作为一种新的、快速发展的光谱分析方法在许多领域备受关注。尤其在化学领域,THz-TDS技术已得到了广泛的应用,并显示出了广阔的应用前景。本文介绍了THz技术的特点、THz辐射的产生、探测及其信号处理;讨论了该技术在化学及其相关领域中的应用;初步探讨了该技术在化学领域应用中一些亟待解决的问题及今后发展的方向。  相似文献   

4.
含硫氨基酸的太赫兹光谱   总被引:1,自引:0,他引:1  
王雪美  王卫宁 《化学学报》2008,66(20):2248-2252
利用太赫兹时域光谱(THz-TDS)技术研究室温条件下多晶含硫氨基酸L-蛋氨酸(Met)和L-半胱氨酸(Cys)的光谱特性, 得到相应的吸收谱和折射率谱, 表明含硫氨基酸在THz波段具有区别于其它氨基酸的显著特征. 在实验测量的有效光谱范围0.2~2.8 THz内, L-蛋氨酸的THz吸收峰分别位于1.06, 1.88和2.70 THz; L-半胱氨酸的吸收峰分别位于1.40, 1.70, 2.33和2.61 THz, 两种氨基酸的平均折射率均为1.44. 利用GAUSSIAN 03软件包中的Hartree-Fock理论计算了蛋氨酸双分子的低频振动谱, 表明了与蛋氨酸各吸收峰对应的分子微观振动模式, 并对实验光谱进行了解析讨论.  相似文献   

5.
两种联苯酚类化合物的太赫兹时域光谱研究   总被引:13,自引:0,他引:13  
利用太赫兹时域光谱技术获得了295 K时2,2′-二羟基联苯(2,2′-biphenol, 2BP)和4,4′-二羟基联苯(4,4′-biphenol, 4BP)在0.1~1.6 THz波段的光谱. 实验结果显示, 两种同分异构体在太赫兹频率范围内的吸收谱有显著的差异. 结合量子化学计算, 2BP中的两个羟基间能够形成分子内氢键, 在1.45 THz的运动模式初步判断为包含氢键在内的两个苯环的低频摆动.  相似文献   

6.
D-、L-和DL-青霉胺的太赫兹时域光谱   总被引:8,自引:0,他引:8  
利用太赫兹时域光谱技术(THz-TDS)对D-、L-和DL-青霉胺的研究发现, 三种样品在0.2 THz到1.8 THz波段的吸收光谱存在显著差异, 实验结果表明, THz吸收光谱能够鉴别青霉胺对映异构体, 这一特点将可以用于青霉胺药物的检测. 本文利用纯D-、L-青霉胺的THz吸收光谱, 对D-、L-青霉胺混合样品的THz吸收光谱进行拟合, 证明可以用THz光谱定量分析混合样品中D-、L-青霉胺的相对含量. 这项研究为手性药物分子检测和分析提供了新的实验方法, 也对深入了解手性药物与生物靶分子之间相互作用提供了启示.  相似文献   

7.
聚乙烯—碳黑复合材料的太赫兹时域光谱测量研究   总被引:1,自引:0,他引:1  
利用太赫兹时域光谱(THz-TDS)技术在0.3-2.0 THz频率区间测量了不同碳黑含量(?渍)的聚乙烯-碳黑复合材料光电性质随频率的变化及其与碳黑含量之间的关系. 测量发现, 随碳黑含量的增加, 复合体系的吸收系数逐渐增大, 并伴随折射率的相应增加. 在碳黑含量确定的情况下, 材料的吸收系数随频率的增加而增大, 但折射率随频率的增加而略有减小. 在假定复合体系中孤立碳黑颗粒在外电场作用下的极化过程是引起材料太赫兹频区介电损耗主要因素的情况下, 利用德拜偶极子弛豫理论对聚乙烯-碳黑复合材料的介电行为进行了解释.  相似文献   

8.
太赫兹波具有低能、宽带和独特的时域脉冲特性等特点,使其在材料物质科学领域具有着重要的应用价值.自主搭建了一套基于光电导天线的太赫兹时域光谱仪.从介绍光电导天线产生和探测太赫兹波的原理出发,重点阐述了太赫兹时域光谱仪的光路设计优化、搭建调试、功能拓展和应用实例分析,为自主研制高性能太赫兹时域光谱仪提供了方法和经验.  相似文献   

9.
利用太赫兹(terahertz,THz)时域光谱技术室温下进行了蒽醌及其衍生物2_甲基蒽醌、蒽醌_2_磺酸钠、蒽醌_2,6_二磺酸钠、蒽醌_2,7_二磺酸钠在10~55cm-1(0.3~1.65THz)频谱范围内的光谱测量。结果表明,蒽醌及其衍生物在此波段有不同的吸收特征,它们的吸收可能是由于晶格振动引起的。THz时域光谱不仅能够鉴别分子结构存在微小差别的化合物而且还能鉴别同分异构体。  相似文献   

10.
乐果分子的太赫兹时域光谱研究   总被引:2,自引:0,他引:2  
研究了有机磷农药乐果在0.2~2.5 THz波段的光谱特性。应用密度泛函理论的Becke-3-Lee-Yang-Parr(B3LYP)方法计算了乐果分子在THz波段的振动吸收谱,同时利用THz时域光谱系统(THz-TDS)测得了乐果在此波段的吸收谱和折射率谱。根据理论计算结果,借助于Gaussian View软件对乐果的THz吸收谱进行了指认,并给出了与光谱特征吸收对应的分子振动构象。研究表明:乐果分子在THz波段存在吸收峰,理论计算与实验结果符合较好,且乐果分子在THz波段的吸收是由分子内和分子间振动共同引起。本研究证明了将THz-TDS技术用于乐果分子探测和识别的可行性,为THz时域光谱技术在其它农药分子识别和残留检测中的应用提供了有益的借鉴。  相似文献   

11.
利用太赫兹时域光谱技术对不同地区和田玉及其仿真品进行测量与分析,为不同地区的和田玉及真伪鉴别提供技术支撑。实验选取了新疆、韩国和青海三个不同产地的和田玉样品,同时选取了三种仿和田玉样品,在0.1~2.5THz频段进行太赫兹光谱数据采集。不同地区和田玉在太赫兹频段具有不同的特征吸收峰,并且每个样品在相对高频和低频的吸收量不同,随频率的增加,样品在相对低频处的折射率呈增加趋势,在高频处呈缓慢下降趋势,不同样品的变化趋势不同。仿真样品与和田玉在0.1~2.5 THz波段的吸收系数、折射率、相对介电常数相差很大。实验结果初步表明,用太赫兹波段的吸收系数和折射率来鉴别和田玉及仿真品是可行的,能够区分不同地区和田玉及仿真样品,该方法快速、便捷,能为市场监管提供有力技术支撑。  相似文献   

12.
本文针对半胱氨酸(Cys)、天冬酰胺(Asn)和苏氨酸(Thr)等三种L型氨基酸及其混合物,在太赫兹时域谱分析仪上测定了吸收曲线,计算了相应的吸收系数谱、摩尔吸收系数谱,求出了混合物的摩尔浓度。同时,分析了不稳定超快激光源对实验数据的影响,提出一种消除不稳定因素的定量分析算法。最后,对比了混合物样品的计算浓度和真实浓度,并以吸收系数谱的拟合误差指标评价了这种算法。  相似文献   

13.
张琴  陈涛 《分析化学》2020,(8):1058-1066
应用太赫兹时域光谱(THz-TDS)技术测量了次黄嘌呤(HPX)和别嘌醇(ALP)两种同分异构体在室温条件下0.1~2.0 THz范围的THz吸收光谱。同时,为进一步分析样品在THz波段的低频振动模式和弱相互作用类型,借助密度泛函理论(DFT)对两者结构进行几何优化,应用势能分布(PED)分析对分子基团的振动模式进行归属,并应用基于分子力场的能量分解分析(EDA-FF)方法对光谱色散特性进行定性分析。PED分析结果表明,HPX团簇的振动方式均为二面角扭转,ALP团簇则为键角弯曲和二面角扭转两种振动方式。EDA-FF数据和原子着色图表明,两者弱相互作用类型都是以静电相互作用为主、色散力为辅,ALP体系内氢键成键数目为HPX体系的两倍,并且色散作用都集中体现在与氢键直接作用的供体与受体原子上。研究结果表明,DFT与PED、EDA-FF分析方法相结合为结构相似的生物分子和分子间非键相互作用的深入研究提供了有价值的参考。  相似文献   

14.
王果  王卫宁 《物理化学学报》2012,28(7):1579-1585
利用太赫兹时域光谱和低频拉曼光谱仪研究了丙氨酸晶体在0.2-2.6 THz 范围内的太赫兹吸收和拉曼散射光谱. 研究表明: 在该低频范围有四个振动模式, 其中两个只具有拉曼活性, 其余两个同时具有红外和拉曼活性. 基于B3LYP杂化密度泛函的自洽场晶体轨道法对丙氨酸周期性结构进行了理论研究和光谱计算. 通过比较实验和理论结果, 指认了实验光谱特征峰所属的不可约表示. 通过理论计算得到的图形, 得出在此低频范围的振动模式主要包含分子间氢键的扭转和摇摆运动.  相似文献   

15.
谷胱甘肽(Glutathione)的构型构象对其发挥生物学功能具有重要意义。本研究利用空气等离子体太赫兹时域光谱(THz-TDS)获得了还原型谷胱甘肽(GSH)和氧化型谷胱甘肽(GSSG)在0.5~12.0 THz波段的吸收光谱,结果表明,GSH在太赫兹波段有丰富的特征吸收峰,而GSSG呈现单调无特征的吸收曲线。粉末X射线衍射(PXRD)结果表明,GSH具有一定的晶型结构而GSSG为无定形态,提示太赫兹光谱对物质晶体结构有敏感响应。利用密度泛函理论(DFT)对GSH晶胞结构进行计算和太赫兹振动光谱分析,结果表明,GSH分子能形成丰富的氢键,这些氢键网络有助于约束柔性肽分子并使分子有序地堆叠形成晶体。晶格和氢键与太赫兹波作用产生共振吸收,GSH的太赫兹光谱中不同吸收峰对应分子不同集体振动或局域振动,并且与氢键的振动密切相关。本研究结果有助于加深GSH分子构型构象和分子弱相互作用的认识。  相似文献   

16.
利用太赫兹时域光谱研究了多壁碳纳米管/高密度聚乙烯(MWNTs/HDPE)复合体系的光学性质.第一次使用MG模型提取了不同浓度下MWNTs的光学常数,并利用DL模型对结果进行了解释.  相似文献   

17.
百菌清晶体太赫兹光谱理论模拟分析   总被引:1,自引:0,他引:1  
李兰玉  王强  马冶浩 《分析化学》2012,(12):1913-1918
本研究从实验和理论分析两方面探讨了杀菌剂百菌清固体在0.4~3.0 THz的光谱特性。利用太赫兹时域光谱技术(THz-TDS)获得了在这一频谱范围内百菌清固体分子的折射率谱和吸收谱。为了更好地对实验吸收谱进行解析,克服单分子模拟缺陷,从晶体分子结构方面分析在0.4~3.0 THz波段百菌清分子结构变化和振动吸收谱,对百菌清THz实验吸收谱进行了指认,并分析了百菌清固体分子特征吸收峰产生机理。研究表明,晶体结构理论模拟弥补了单分子模拟的缺陷,完成了对11处所有实验特征吸收峰的验证。实验谱主要由分子之间Cl—C—C,N—C—C键相互作用和晶胞内分子的集体振动产生。  相似文献   

18.
张琪  方虹霞  张慧丽  秦丹  洪治  杜勇 《化学学报》2015,73(10):1069-1073
利用太赫兹时域光谱(Terahertz time-domain spectroscopy, THz-TDS)技术对呋喃妥因、尿素及其研磨和溶剂共晶体进行表征分析, 实验结果显示了呋喃妥因和尿素的研磨和溶剂共晶体位于0.85、1.23、1.60 THz的吸收峰明显区别于原料物质. 该结果表明太赫兹光谱技术可以有效鉴别呋喃妥因、尿素及其共晶体. 运用密度泛函理论(Density functional theory, DFT)对呋喃妥因和尿素共晶体的2种可能结构进行了结构优化和光谱模拟, 模拟结果显示其中的结构A在0.49、0.81、1.25、1.61 THz处具有吸收峰, 与实验结果较吻合. 推断共晶体氢键的形成位置为尿素中的氨基H6和呋喃妥因上的酰胺基O30, 该处形成第一处氢键, 而呋喃妥因的酰胺基H31和尿素上的羰基O1形成第二处氢键. 同时结合理论模拟结果对呋喃妥因和尿素共晶体分子振动模式进行归属.  相似文献   

19.
测定了纳米银/聚乙烯(nano-Ag/PE)复合体的电导率和太赫兹时域光谱(THz-TDS),研究了其导电性质和在远红外区的反常吸收特性;结合有效介质理论和Drude理论,利用简化的公式对太赫兹时域光谱测量结果进行了分析,并通过对电导率测量结果进行拟合分析得到了纳米Ag及其表层氧化物的电导率信息.结果表明,nano-Ag/PE复合体的逾渗阈值在0.11附近(体积分数),n值接近4.5,偏离"普适性行为".这是由于颗粒表面的氧化层及颗粒隧穿导电效应所致.与此同时,nano-Ag/PE复合体在THz波段的反常吸收性质与表面氧化层有关.  相似文献   

20.
固态多环芳烃化合物的THz时域光谱研究   总被引:3,自引:0,他引:3  
利用太赫兹时域光谱技术室温下对芳烃化合物萘、联苯、葸、α-萘酚和β-萘酚在3-73cm^-1(0.1.2.2THz)频谱范围内进行了光谱测量。结果表明,多环芳烃化合物在此波段有不同的吸收特征。不能形成氢键的萘、联苯和蒽在67cm^-1(2.0THz)附近均有一吸收峰,这可能是由于分子之间的振动即晶格振动所引起的;而能够形成氢键的口一萘酚和卢.萘酚,其吸收峰可归结于分子间氢键的相互作用所引起的集体振动模式。1Hz时域光谱不仅能够鉴别分子结构存在微小差别的化合物而且还能鉴别同分异构体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号