首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a piecewise analytical Hamiltonian system with a cusp on a switch line, which has a family of periodic orbits near a generalized homoclinic loop, we study the maximum number of limit cycles bifurcating from the periodic orbits. For doing so, we first obtain the asymptotic expressions of the Melnikov functions near the loop. Finally we present two examples illustrating applications of the main results.  相似文献   

2.
In this paper we study the number of limit cycles appearing in Hopf bifurcations of piecewise planar Hamiltonian systems. For the case that the Hamiltonian function is a piecewise polynomials of a general form we obtain lower and upper bounds of the number of limit cycles near the origin respectively. For some systems of special form we obtain the Hopf cyclicity.  相似文献   

3.
In this paper, we study the bifurcation of limit cycles in piecewise smooth systems by perturbing a piecewise Hamiltonian system with a generalized homoclinic or generalized double homoclinic loop. We first obtain the form of the expansion of the first Melnikov function. Then by using the first coefficients in the expansion, we give some new results on the number of limit cycles bifurcated from a periodic annulus near the generalized (double) homoclinic loop. As applications, we study the number of limit cycles of a piecewise near-Hamiltonian systems with a generalized homoclinic loop and a central symmetric piecewise smooth system with a generalized double homoclinic loop.  相似文献   

4.
In this paper, we pay attention to the number of limit cycles for a class of piecewise smooth near-Hamiltonian systems. By using the expression of the first order Melnikov function and some known results about Chebyshev systems, we study upper bound of the number of limit cycles in Hopf bifurcation and Poincar\''{e} bifurcation respectively.  相似文献   

5.
In this paper, we study limit cycle bifurcations for a kind of non-smooth polynomial differential systems by perturbing a piecewise linear Hamiltonian system with the center at the origin and a homoclinic loop around the origin. By using the first Melnikov function of piecewise near-Hamiltonian systems, we give lower bounds of the maximal number of limit cycles in Hopf and homoclinic bifurcations, and derive an upper bound of the number of limit cycles that bifurcate from the periodic annulus between the center and the homoclinic loop up to the first order in εε. In the case when the degree of perturbing terms is low, we obtain a precise result on the number of zeros of the first Melnikov function.  相似文献   

6.
We study bifurcations of limit cycles arising after perturbations of linear piecewise Hamiltonian systems. In this paper we find bounds for the numbers of limit cycles for several families of which phase portraits were classified in Xiong and Han (2013) [14].  相似文献   

7.
In this paper we investigate the limit cycles of planar piecewise linear differential systems with two zones separated by a straight line. It is well known that when these systems are continuous they can exhibit at most one limit cycle, while when they are discontinuous the question about maximum number of limit cycles that they can exhibit is still open. For these last systems there are examples exhibiting three limit cycles.The aim of this paper is to study the number of limit cycles for a special kind of planar discontinuous piecewise linear differential systems with two zones separated by a straight line which are known as refracting systems. First we obtain the existence and uniqueness of limit cycles for refracting systems of focus-node type. Second we prove that refracting systems of focus–focus type have at most one limit cycle, thus we give a positive answer to a conjecture on the uniqueness of limit cycle stated by Freire, Ponce and Torres in Freire et al. (2013). These two results complete the proof that any refracting system has at most one limit cycle.  相似文献   

8.
Limit cycle bifurcations for a class of perturbed planar piecewise smooth systems with 4 switching lines are investigated. The expressions of the first order Melnikov function are established when the unperturbed system has a compound global center, a compound homoclinic loop, a compound 2-polycycle, a compound 3-polycycle or a compound 4-polycycle, respectively. Using Melnikov’s method, we obtain lower bounds of the maximal number of limit cycles for the above five different cases. Further, we derive upper bounds of the number of limit cycles for the later four different cases. Finally, we give a numerical example to verify the theory results.  相似文献   

9.
In this work, a Hopf bifurcation at infinity in three-dimensional symmetric continuous piecewise linear systems with three zones is analyzed. By adapting the so-called closing equations method, which constitutes a suitable technique to detect limit cycles bifurcation in piecewise linear systems, we give for the first time a complete characterization of the existence and stability of the limit cycle of large amplitude that bifurcates from the point at infinity. Analytical expressions for the period and amplitude of the bifurcating limit cycles are obtained. As an application of these results, we study the appearance of a large amplitude limit cycle in a Bonhoeffer–van der Pol oscillator.  相似文献   

10.
In this paper, the authors consider limit cycle bifurcations for a kind of nonsmooth polynomial differential systems by perturbing a piecewise linear Hamiltonian system with a center at the origin and a heteroclinic loop around the origin. When the degree of perturbing polynomial terms is n(n ≥ 1), it is obtained that n limit cycles can appear near the origin and the heteroclinic loop respectively by using the first Melnikov function of piecewise near-Hamiltonian systems, and that there are at most n + [(n+1)/2] limit cycles bifurcating from the periodic annulus between the center and the heteroclinic loop up to the first order in ε. Especially, for n = 1, 2, 3 and 4, a precise result on the maximal number of zeros of the first Melnikov function is derived.  相似文献   

11.
In this paper, we consider Poincar{\''e} bifurcation from an elliptic Hamiltonian of degree four with two-saddle cycle. Based on the Chebyshev criterion, not only one case in the Li{\''e}nard equations of type $(3, 2)$ is discussed again in a different way from the previous ones, but also its two extended cases are investigated, where the perturbations are given respectively by adding $\varepsilon y(d_0 + d_2 v^{2n})\frac{\partial }{{\partial y}}$ with $ n\in \mathbb{N^+}$ and $\varepsilon y(d_0 + d_4 {v^4}+ d_2 v^{2n+4})\frac{\partial }{{\partial y}}$ with $n=-1$ or $ n\in \mathbb{N^+}$, for small $\varepsilon > 0$. For the above cases, we obtain all the sharp upper bound of the number of zeros for Abelian integrals, from which the existence of limit cycles at most via the first-order Melnikov functions is determined. Finally, one example of double limit cycles for the latter case is given.  相似文献   

12.
BIFURCATIONS OF LIMIT CYCLES FORMING COMPOUND EYES IN THE CUBIC SYSTEM   总被引:14,自引:1,他引:13  
Let H(n)be the maximal number of limit cycle of planar real polynomial differentialsystem with the degree n and C_m~k denote the nest of k limit cycles enclosing m singular points.By computing detection functions,tne authors study bifurcation and phase diagrams in theclass of a planar cubic disturbed Hamiltonian system.In particular,the following conclusionis reached:The planar cubic system(E_ε)has 11 limit cycles,which form the pattern ofcompound eyes of C_9~1(?)2[C'~ε(?)(2C_1~2)and have the symmetrical structure;so the Hilbertnumber H(3)≥11.  相似文献   

13.
We investigate the existence and number of limit cycles in a class of general planar piecewise linear systems constituted by two linear subsystems with node–node dynamics. Using the Liénard-like canonical form with seven parameters, some sufficient and necessary conditions for the existence of limit cycles are given by studying the fixed points of proper Poincaré maps. In particular, we prove the existence of at least two nested limit cycles and describe some parameter regions where two limit cycles exist. The main results are applied to the PWL Morris–Lecar neural model to determine the existence and stability of the limit cycles.  相似文献   

14.
In this paper, we first study the problem of finding the maximum number of zeros of functions with parameters and then apply the results obtained to smooth or piecewise smooth planar autonomous systems and scalar periodic equations to study the number of limit cycles or periodic solutions, improving some fundamental results both on the maximum number of limit cycles bifurcating from an elementary focus of order $k$ or a limit cycle of multiplicity $k$, or from a period annulus, and on the maximum number of periodic solutions for scalar periodic smooth or piecewise smooth equations as well.  相似文献   

15.
The existence and number of limit cycles in a class of general planar piecewise linear systems constituted by two linear subsystems with saddle–saddle dynamics are investigated. Using the Liénard-like canonical form with seven parameters, the parametric regions of the existence of limit cycles are given by constructing proper Poincaré maps. In particular, the existence of at least two limit cycles is proved and some parameter regions where two nested limit cycles exist are given.  相似文献   

16.
The objective of this paper is to study the number and stability of limit cycles for planar piecewise linear (PWL) systems of node–saddle type with two linear regions. Firstly, we give a thorough analysis of limit cycles for Liénard PWL systems of this type, proving one is the maximum number of limit cycles and obtaining necessary and sufficient conditions for the existence and stability of a unique limit cycle. These conditions can be easily verified directly according to the parameters in the systems, and play an important role in giving birth to two limit cycles for general PWL systems. In this step, the tool of a Bendixon-like theorem is successfully employed to derive the existence of a limit cycle. Secondly, making use of the results gained in the first step, we obtain parameter regions where the general PWL systems have at least one, at least two and no limit cycles respectively. In addition for the general PWL systems, some sufficient conditions are presented for the existence and stability of a unique one and exactly two limit cycles respectively. Finally, some numerical examples are given to illustrate the results and especially to show the existence and stability of two nested limit cycles.  相似文献   

17.
This paper concerns with the number of limit cycles for a cubic Hamiltonian system under cubic perturbation. The fact that there exist 9-11 limit cycles is proved. The different distributions of limit cycles are given by using methods of bifurcation theory and qualitative analysis, among which two distributions of eleven limit cycles are new.  相似文献   

18.
This paper deals with the problem of limit cycle bifurcations for a piecewise smooth Hamilton system with two straight lines of separation. By analyzing the obtained first order Melnikov function, we give upper and lower bounds of the number of limit cycles bifurcating from the period annulus between the origin and the generalized homoclinic loop. It is found that the first order Melnikov function is more complicated than in the case with one straight line of separation and more limit cycles can be bifurcated.  相似文献   

19.
The generalized homoclinic loop appears in the study of dynamics on piecewise smooth differential systems during the past two decades. For planar piecewise smooth differential systems, there are concrete examples showing that under suitable perturbations of a generalized homoclinic loop one or two limit cycles can appear. But up to now there is no a general theory to study the cyclicity of a generalized homoclinic loop, that is, the maximal number of limit cycles which are bifurcated from it.  相似文献   

20.
We consider the existence of periodic orbits in a class of three-dimensional piecewise linear systems. Firstly, we describe the dynamical behavior of a non-generic piecewise linear system which has two equilibria and one two-dimensional invariant manifold foliated by periodic orbits. The aim of this work is to study the periodic orbits of the continuum that persist under a piecewise linear perturbation of the system. In order to analyze this situation, we build a real function of real variable whose zeros are related to the limit cycles that remain after the perturbation. By using this function, we state some results of existence and stability of limit cycles in the perturbed system, as well as results of bifurcations of limit cycles. The techniques presented are similar to the Melnikov theory for smooth systems and the method of averaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号