首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Symmetric perturbations imposed on cylinder wakes may result in a modification of the vortex shedding mode from its natural antisymmetric, or alternating, to a symmetric one where twin vortices are simultaneously shed from both sides of the cylinder. In this paper, the symmetric mode in the wake of a circular cylinder is induced by periodic perturbations imposed on the in-flow velocity. The wake field is examined by PIV and LDV for Reynolds numbers about 1200 and for a range of perturbation frequencies between three and four times the natural shedding frequency of the unperturbed wake. In this range, a strong competition between symmetric and antisymmetric vortex shedding occurs for the perturbation amplitudes employed. The results show that symmetric formation of twin vortices occurs close to the cylinder synchronized with the oscillatory component of the flow. The symmetric mode rapidly breaks down and gives rise to an antisymmetric arrangement of vortex structures further downstream. The downstream wake may or may not be phase-locked to the imposed oscillation. The number of cycles for which the symmetric vortices persist in the near wake is a probabilistic function of the perturbation frequency and amplitude. Finally, it is shown that symmetric shedding is associated with positive energy transfer from the fluid to the cylinder due to the fluctuating drag.  相似文献   

2.
Dynamic instability of a non-shallow circular arch, under harmonic time-depending load, is investigated in this paper both in analytical and experimental ways. The analytical model is a 2-d.o.f.?reduced model obtained by using a Galerkin projection of a mono-dimensional curved polar continuum. The determination of the regions of instability of the symmetric periodic solution and the discussion of the post-critical behavior are carried out, comparing the results with the experimental evidence on a companion laboratory steel prototype. During post-critical evolution, both periodic and non-periodic solutions are obtained varying the excitation control parameters. The theoretical and experimental models are analyzed around the primary external resonance condition of the first symmetric mode, in the case of a nearly 2:1 internal resonance condition between the first symmetric and anti-symmetric modes. When the motion loses regularity, synthetic complexity indicators are used to describe, in quantitative sense, the nonlinear response.  相似文献   

3.
The fully dynamical motion of a phase boundary is considered for a specific class of elastic materials whose stress-strain relation in simple shear is nonmonotone. It is shown that a preexisting stationary phase boundary in a prestressed layer composed of such a material can be set in motion by a finite amplitude shear pulse. An infinity of solutions is possible according to the present theory, each of which is characterized by different reflected and transmitted waves at the phase boundary. A global analysis gives exact bounds on the size of the solution family for different shear pulse amplitudes. For certain ranges of shear pulse amplitudes a completely reflecting solution will exist, while for an in general different range of shear pulse amplitudes a completely transmitting solution will exist. The properties of these different solutions are examined. In particular, it is observed that the ringing of a shear pulse between the external boundaries and the internal phase boundary gives rise to periodic phase boundary motion for both the case of a completely reflecting phase boundary and a completely transmitting phase boundary.  相似文献   

4.
A Predator–Prey type of dynamical systems with non-monotonic response function and time-periodic perturbation is considered in this paper. We present a proof for the number of equilibria in the unperturbed system at some parts of the parameter space. The perturbed system is a dynamical system defined by a periodic vector field. We present an alternative proof for a classical result on the period of the periodic solution. By using a numerical continuation method AUTO (Doedel et al., 1986 [9]), we present a bifurcation analysis for periodic solution of the perturbed system where we found fold, cusp and Swallowtail bifurcations.  相似文献   

5.
Global bifurcations and chaos in modal interactions of an imperfect circular plate with one-to-one internal resonance are investigated. The case of primary resonance, in which an excitation frequency is near natural frequencies, is considered. The damping force is not included in the analysis. The method of multiple scales is used to obtain an autonomous system from a non-autonomous system of ordinary differential equations governing non-linear oscillations of an imperfect circular plate. The Melnikov's method for heteroclinic orbits of the autonomous system is used to obtain the criteria for chaotic motion. It is shown that the existence of heteroclinic orbits in the unperturbed system implies chaos arising from breaking of heteroclinic orbits under perturbation. The validity of the result is checked numerically. It is also observed numerically that chaos can appear due to breaking of invariant tori under perturbation.  相似文献   

6.
The investigation of flow in essentially inhomogeneous porous systems through the analysis of model periodic structures [1] is considered. In the acoustic approximation, an integrodifferential equation is obtained that describes the motion of a viscous fluid in a rigid porous medium of periodic structure. The velocity vector and pressure are represented in the form of asymptotic series with respect to a small parameter that characterizes the size of the periodicity cell, and the well-known procedure for averaging linearized hydrodynamic equations with small coefficients of viscosity [2, 3] is also used. A solution is presented to the local problem in the periodicity cell for a structure consisting of a doubly periodic system of infinitely long rods of circular section and a compressible viscous fluid that fills the space between them, and also for a structure formed by a system of orthogonal rectilinear channels, filled with viscous fluid, in a solid.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 123–130, March–April, 1988.  相似文献   

7.
The basis for any model-based control of dynamical systems is a numerically efficient formulation of the motion equations, preferably expressed in terms of a minimal set of independent coordinates. To this end the coordinates of a constrained system are commonly split into a set of dependent and independent ones. The drawback of such coordinate partitioning is that the splitting is not globally valid since an atlas of local charts is required to globally parameterize the configuration space. Therefore different formulations in redundant coordinates have been proposed. They usually involve the inverse of the mass matrix and are computationally rather complex. In this paper an efficient formulation of the motion equations in redundant coordinates is presented for general non-holonomic systems that is valid in any regular configuration. This gives rise to a globally valid system of redundant differential equations. It is tailored for solving the inverse dynamics problem, and an explicit inverse dynamics solution is presented for general full-actuated systems. Moreover, the proposed formulation gives rise to a non-redundant system of motion equations for non-redundantly full-actuated systems that do not exhibit input singularities.  相似文献   

8.
The mathematical formulation of the problem of determining the electrodes for the formation of intense beams of charged particles reduces to the solution of the Cauchy problem for the Laplace equation. One can proceed either by separating the variables [1] or on the basis of the theory of analytic continuation [2–5], This approach can be used for plane or axisymmetric flows. An algorithm for the construction of the analytic solution, which can also be used in the threedimensional case, is given below. It is assumed that the beam boundary coincides with the coordinate surface x1=0 of an orthogonal system xi (i=1,2,3). The solution is put in the form of a series in x1 with coefficients dependent on x2 and x3, determined from recurrence relations. The case of emission limited by space charge and temperature generally gives rise to difficulties due to the divergence of the series which makes it impossible to calculate the zero equipotential by the indicated method.As an example, the formation of beams with an elliptic cross section is considered in the following cases: (1) periodic variation of the z- component of the velocity; (2) nonmonotonic variation of the potential in one-dimensional flow between planes z=const; (3) a beam accelerated in accordance with a 3/2 law.In the construction of the expansions the conditions on the boundary are satisfied exactly by the first two terms of the series.  相似文献   

9.
We study forced vibrations of a gimbal gyro occurring if the inner ring is subjected to a perturbing torque that is the sum of the viscous friction torque and a periodic small-amplitude torque. In the absence of the perturbing torque, there exist two steady-state motions of the gimbal gyro, in which the gimbal rings are either orthogonal or coincide. These motions are respectively stable and unstable. We obtain an equation for the unperturbed system, whose separatrix passes through hyperbolic points. The distance between these points (the Melnikov distance) is calculated to find a condition for the intersection of the separatrices of the perturbed system. We find a domain in the parameter space where the distance changes sign, which indicates the onset of chaotic motion.  相似文献   

10.
We study the pitch motion dynamics of an asymmetric spacecraft in circular orbit under the influence of a gravity gradient torque. The spacecraft is perturbed by a small aerodynamic drag torque proportional to the angular velocity of the body about its mass center. We also suppose that one of the moments of inertia of the spacecraft is a periodic function of time. Under both perturbations, we show that the system exhibits a transient chaotic behavior by means of the Melnikov method. This method gives us an analytical criterion for heteroclinic chaos in terms of the system parameters which is numerically contrasted. We also show that some periodic orbits survive for perturbation small enough.  相似文献   

11.
The propagation of longitudinal and flexural waves in axisymmetric circular cylindrical shells with periodic circular axial curvature is studied using a finite element method previously developed by the authors. Of primary interest is the coupling of these wave modes due to the periodic axial curvature which results in the generation of two types of stop bands not present in straight circular cylinders. The first type is related to the periodic spacing and occurs independently for longitudinal and flexural wave modes without coupling. However, the second type is caused by longitudinal and flexural wave mode coupling due to the axial curvature. A parametric study is conducted where the effects of cylinder radius, degree of axial curvature, and periodic spacing on wave propagation characteristics are investigated. It is shown that even a small degree of periodic axial curvature results in significant stop bands associated with wave mode coupling. These stop bands are broad and conceivably could be tuned to a specific frequency range by judicious choice of the shell parameters. Forced harmonic analyses performed on finite periodic structures show that strong attenuation of longitudinal and flexural motion occurs in the frequency ranges associated with the stop bands of the infinite periodic structure.  相似文献   

12.
The contact problem concerning oscillation of a circular rigid punch, moving uniformly at sub-Rayleigh speed along the surface of an elastic half space, is investigated using a three-dimensional formulation. Slow motion of the punch is considered, which implies that the characteristic time for the external loading is much larger than the time interval necessary for shear waves to propagate across the punch. An asymptotic solution for the vertical oscillation of the punch is given. It is shown that the vertical displacement of the punch can approximately be described by the equation of dynamics for a system of one degree of freedom with viscous friction. The dependence of the coefficients for effective viscosity and stiffness, occurring in this equation, on the speed of the punch and Poisson ratio of the half space, is investigated. The solution for the non-stationary problem concerning a suddenly applied moving point load is also obtained, correcting and extending the result known so far. Mathematics Subject Classifications (2000) 74H10, 74J05, 74M15.  相似文献   

13.
Investigation of the plane–parallel motion of particles of an incompressible medium reduces to investigation of a Hamiltonian system. The Hamiltonian function is a stream function. The timeperiodic mixing of an incompressible medium is described by a timeperiodic Hamiltonian function. The mixing of the medium is associated with dynamic chaos. Transition to dynamic chaos is studied by analysis of the positions of Lagrangian particles at times divisible by the period — Poincaré recurrence points. The set of Poincaré recurrence points is studied with the use of Poincaré mapping on the phase flow. A method for constructing Poincaré maps in parametric form is proposed. A map is constructed as a series in a small parameter. It is shown that the parametric method has a number of advantages over the generating function method is shown. The proposed method is used to examine the motion of particles of an incompressible viscous fluid layer between two circular cylinders. The outer cylinder is immovable, and the inner cylinder rotates about a point that does not coincide with the centers of both cylinders. An optimal mode for the motion is established, in which the area of the chaotic region is maximal.  相似文献   

14.
In this paper, we establish a homogenization framework to analyze the microscopic symmetric bifurcation buckling of cellular solids subjected to macroscopically uniform compression. To this end, describing the principle of virtual work for infinite periodic materials in the updated Lagrangian form, we build a homogenization theory of finite deformation, which satisfies the principle of material objectivity. Then, we state a postulate that at the onset of microscopic symmetric bifurcation, microscopic velocity becomes spontaneous, yet changing the sign of such spontaneous velocity has no influence on the variation in macroscopic states. By applying this postulate to the homogenization theory, we derive the conditions to be satisfied at the onset of microscopic symmetric bifurcation. The resulting conditions are verified by analyzing numerically the in-plane biaxial buckling of an elastic hexagonal honeycomb. It is thus shown that three kinds of experimentally observed buckling modes of honeycombs i.e., uniaxial, biaxial and flower-like modes, are attained and classified as microscopic symmetric bifurcation. It is also shown that the multiplicity of bifurcation gives rise to the complex cell-patterns in the biaxial and flower-like modes.  相似文献   

15.
We study a Hamiltonian system of coupled oscillators derived from two forced pendulums, connected with a torsional spring. The uncoupled limit is described by two identical oscillators, each possessing a homoclinic orbit separating bounded from unbounded motion. We focus on intermediate energy levels which lead to detained motions, defined as trajectories that, though unbounded as t → ∞, oscillate within the region defined by the homoclinic orbit of the unperturbed system for a long but finite time. We analyze the existence and behavior of these motions in terms of equipotential surfaces. These curves provide bounds on the motion of the system and are shown to be closed for low energies. However, above some critical energy level the equipotential curves become open. The detained trajectories are shown to arise from the region of phase space that was, for appropriate energies, stochastic. These motions remain within this region for long times before finally “leaking out” of the opening in the equipotential curves and proceeding to infinity.  相似文献   

16.
Using a Hamiltonian formalism and a sequence of canonical transformations, we show that the ordinary differential equations associated with the forced oscillations of rotating circular disks admit the first integral of motion. This reduces the phase space dimension of the governing equations from five to three. The phase space flows of the reduced system are then visualized using Poincaré maps. Our results show that single mode oscillations of rotating disks are subject to chaotic behavior through the emergence of higher-order resonant islands that surround fundamental periodic cycles. We extend our new formalism to imperfect disks and construct adiabatic invariants near to and far from resonances. For low-speed imperfect disks, we find a new kind of bifurcations of the phase space flows as the system parameters vary. We study the effect of structural damping using Hamilton's principle for non-conservative systems and reveal the existence of asymptotically stable limit cycles for the damped system near the 1:1 resonance. We show that a low-speed disk is eventually flattened due to damping effect.  相似文献   

17.
Quinn  D. Dane 《Nonlinear dynamics》1997,14(4):309-333
We study the phenomena of resonance capture in a three degree-of-freedom dynamical system modeling the dynamics of an unbalanced rotor, subject to a small constant torque, supported by orthogonal, linearly elastic supports, which is constrained to move in the plane. In the physical system the resonance exists between translational motions of the frame and the angular velocity of the unbalanced rotor. These equations, valid in the neighborhood of the resonance, possess a small parameter which is related to the imbalance. In the limit 0, the unperturbed system possesses a homoclinic orbit which separates bounded periodic motion corresponding to resonant solutions from unbounded motion which corresponds to solutions passing through the resonance. Using a generalized Melnikov integral, we characterize the splitting distance between the invariant manifolds which govern capture and escape from resonance for 0. It is shown that as certain slowly varying parameters evolve, the separation distance alternates sign, indicating that both capture into, and escape from resonance occur. We find that although a measurable set of initial conditions enter into a sustained resonance, as the system further evolves the orientation of the manifolds reverses and many of these captured solutions will subsequently escape.  相似文献   

18.
Both the symmetric period n-2 motion and asymmetric one of a one-degree- of-freedom impact oscillator are considered.The theory of bifurcations of the fixed point is applied to such model,and it is proved that the symmetric periodic motion has only pitchfork bifurcation by the analysis of the symmetry of the Poincarémap.The numerical simulation shows that one symmetric periodic orbit could bifurcate into two antisymmet- ric ones via pitchfork bifurcation.While the control parameter changes continuously, the two antisymmetric periodic orbits will give birth to two synchronous antisymmetric period-doubling sequences,and bring about two antisymmetric chaotic attractors subse- quently.If the symmetric system is transformed into asymmetric one,bifurcations of the asymmetric period n-2 motion can be described by a two-parameter unfolding of cusp, and the pitchfork changes into one unbifurcated branch and one fold branch.  相似文献   

19.
We consider a delay equation whose delay is perturbed by a small periodic fluctuation. In particular, it is assumed that the delay equation exhibits a Hopf bifurcation when its delay is unperturbed. The periodically perturbed system exhibits more delicate bifurcations than a Hopf bifurcation. We show that these bifurcations are well explained by the Bogdanov-Takens bifurcation when the ratio between the frequencies of the periodic solution of the unperturbed system (Hopf bifurcation) and the external periodic perturbation is 1:2. Our analysis is based on center manifold reduction theory.  相似文献   

20.
A single-mass two-degrees-of-freedom system is considered, witha radially oriented nonlinear restoring force. The latter is smooth andbecomes infinite at a certain value of a radial displacement. Stabilityanalysis is made for planar oscillation, or motion along a givendirection. As long as this motion is periodic, the nonlinearity in therestoring force provides a periodic parametric excitation in thetransverse direction. The linearized stability analysis is reduced tostudy of the Mathieu equation for the (infinitesimal) motions in thetransverse direction. For the case of free oscillations in the givendirection an exact solution is obtained, since a specific analyticalform is used for the (strongly nonlinear) restoring force, which permitsexplicit integration of the equation of motion. Stability of the planarmotion in this case is shown to be very sensitive to even slightdeviations from polar symmetry in the restoring force (as well as to theamplitude of oscillations in the given direction). Numerical integrationof the original equations of motion shows the resulting motion to be awhirling type indeed in case of the transversal instability. For thecase of a sinusoidal forcing in the given direction solution for the(periodic) response is obtained by Krylov–Bogoliubov averaging. Thisresults in the transmitted Ince–Strutt chart – namely, stabilitychart for transverse direction on the amplitude-frequency plane of theexcitation in the original direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号