首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The acid-catalyzed aquation of [Cr(pic)(H2O)4]2 2+ and [Cr(dpic)(H2O)3]+(pic = picolinic acid anion, dpic = dipicolinic acid dianion) in nitrate(V) media was studied. The reaction is reversible in the case of the pic-complex and practically irreversible in the case of the dpic-complex. It is assumed that the reactive form of the substrate undergoes fast chelate ring-opening followed by protolytic equilibria, followed by the rate of the Cr—O bond breaking of the monodentate bonded ligand which is the rate-determining step. The kinetics of pic/dpic ligand liberation were followed spectrophotometrically in the 0.4–2.0 M HNO3 range at I= 2.0 M. The following dependences of the pseudo-first order rate constants on [H+] have been established:k obs=a+b[H+](where b and a are apparent rate constants for the forward and the reverse reaction of the pic-complex) and k obs=b[H+]+c[H+]2(where b and c are apparent rate constants for the dpic liberation). Fast protolytic pre-equilibria, leading to protonation of the carboxylic oxygen atom on the monodentate bonded ligand, preceeds ligand liberation.  相似文献   

2.
Summary The stoichiometric stability constants for La(III) and Y(III)L-serine complexes were determined by potentiometric methods at different ionic strengths adjusted with NaClO4 and at different temperatures. The overall changes in free energy (G o), enthalpy (H o), and entropy (S o) during the protonation ofL-serine and that accompanying the complex formation with the metal ions have been evaluated.
Komplexbildungskonstanten und thermodynamische Parameter für La(III)- und Y(III)-L-Serin-Komplexe
Zusammenfassung Die stöchiometrischen Komplexbildungskonstanten für La(III)- und Y(III)-L-Serin-Komplexe wurden mittels potentiometrischer Methoden bei verschiedenen Ionenstärken (mit NaClO4 adjustiert) und bei verschiedenen Temperaturen bestimmt. Die Änderungen in der freien Energie (G o), Enthalpie (H o) und Entropie (S o) während der Protonierung und der Komplexbildung mit den Metallionen wurden ermittelt.
  相似文献   

3.
The ultraviolet absorbance data from experiments conducted at constant pH and total iron concentration but variable B(OH)3 concentration were used to determined the stability constants of FeB(OH) 4 2+ and Fe[B(OH)4 2 + at 25°C and an ionic strength of 0.68. The estimates obtained were *1 = 1.0 ± 0.2 × 10–2 and *2 = 2 ± 1 × 10–5, respectively (uncertainties are two times the standard error of the estimates). A calculation of the extent of iron(III) borate formation in ocean water at pH 8.2 shows that iron(III) borates are not a significantly large component of iron(III) speciation in seawater.  相似文献   

4.
Summary The kinetics of acid hydrolysis ofcis-[CoCl(btzH)(en)2]2+ andcis-[CoCl(btzMe)(en)2]2+ complexes (where btzH = benzotriazole, btzMe =N-methylbenzotriazole and en = ethylenediamine) have been investigated in HClO4 at ionic strength 1 = 0.25 mol dm–3 in the 30–40° range. In the 1.0 x 10–1 to 1.0 X 10–3 mol dm–3 acid strength range, the rate of aquation of the [CoCl(btzH)(en)2]2+ cation follows the relationship:-d ln[complex]/dt = k1 + k2KNH[H+]–1, where k1 and k2 are aquation rate constants of the acid independent and acid dependent steps respectively, and KNH is the acid dissociation constant of the coordinated benzotriazole.cis-[CoCl(btzMe)-(en)2]2+ undergoes acid independent hydrolysis presumably due to the absence of a labile N-H proton. The base hydrolysis could be followed for thecis-[CoCl(btzMe)(en)2]2+ complex only by measuring hydrolysis rates at 0°.  相似文献   

5.
The rate constants of O2(1Δg) with aliphatic alcohols, terpenes, unsaturated hydrocarbons, chlorinated hydrocarbons, oxygen, and diamines have been studied in thepresence of NO2. The rate constants for oxygen, 1,2-ethane diamine, and 1,2-propane diamine are (9.9 ± 0.4) × 102, (8.7 ± 0.7) × 104, and (1.4 ± 0.3) × 104 1/mol/s, respectively. The rate constants for all other compounds are less than the oxygen rate constant.  相似文献   

6.
Summary The yttrium(III) bonding to organic substrates (oximes, -diketonates and (poly)amino-(poly)carboxylates) has been compared with that of the lanthanoid(III) cations. The complexation constants of Y3+ with the examined organic ligands are similar to those of some cations of the first half of the lanthanoid series, in contrast with the fact that the Y3+ ionic dimensions are similar to those of Ho3+. This has been explained by correlating the formation constants of the Y3+ and the lanthanoids(III) complexes by the equation logK 1=C ACB+E AEB, where the parametersC andE indicate the tendency of each Lewis acidA and Lewis baseB to undergo covalent or ionic bonding, and where the ratioH=E/C indicates the charge control on the bond formation tendency of each speciesA orB. The results are commented in terms of the utility of Y3+ in assisting organic reactions.
Bindung von Yttrium(III) an organische Liganden: Vergleich mit Lanthanoid(III)-Kationen
Zusammenfassung Es wurde die Bindung von Yttrium(III) an organische Substanzen [Oxime, -Diketonate und (Poly)Amino(poly)carboxylate] im Vergleich mit Lanthanoid(III)-Kationen behandelt. Die Komplexierungskonstanten von Y3+ sind ähnlich denen einiger Kationen der ersten Hälfte der Lanthanoidenserie; dies steht im Gegensatz zur Tatsache, daß die Dimensionen des Y3+-Ions denen des Ho3+ entsprechen. Die Erklärung wurde mittels der für die Bildungskonstanten der Y3+- und Lanthanoid(III)-Komplexe gültigen Gleichung logK 1=C ACB+E AEB gefunden, wobeiC undE Parameter sind, die die Tendenz der Lewis-SäurenA und der Lewis-BasenB zum Eingehen von kovalenten oder ionischen Bindungen charakterisieren und wo das VerhältnisH=E/C den Steuerungseffekt der Ladung auf die Bindungstendenz der SpeziesA oderB beschreibt. Die Ergebnisse werden im Hinblick auf den Nutzen von Y3+ zur Unterstützung organischer Reaktionen diskutiert.
  相似文献   

7.
Spectrophotometric determination of the formation constants of iron(III)-8-hydroxyquinoline complexes in 0.1 M sodium perchlorate solution at 25° gave the values K1=[FeOx2+]/([Fe3+][Ox-])=4.9·1013, K2=[FeOx2+]/([FeOx2+][Ox-])=4.2·1012 and K3=[FeOx3]/([FeOx2+][Ox-])=3.9·1010. FeOx2OH and FeOx(OH)2 are obtainable as solid phases. FeOx3 (Ksp=3·10-44, intrinsic solubility 1.6·10-7 M) dissolves in basic solutions to form FeOx2(OH)2 -In a solution saturated with FeOx3, ([FeOx2(OH)2-][Ox-])/[OH-]2=7.7·10-5.  相似文献   

8.
Substitution reactions of trans-[CoCl2(en)2]Cl (where en?=?ethylenediamine) with L-cystine has been studied in 1.0?×?10?1?mol?dm?3 aqueous perchlorate at various temperatures (303–323?K) and pH (4.45–3.30) using UV-Vis spectrophotometer on various [Cl?] from 0.05 to 0.01?mol?L?1. The products have been characterized by their physico-chemical and spectroscopic data. Trans-[CoCl(en)2(H2O)]2+, from the hydrolysis of trans-[CoCl2(en)2]+ in the presence of Cl?, formed a complex with L-cystine at all temperatures in 1?:?1 molar ratio. L-cystine is bidentate to Co(III) through Co–N and Co–S bonds. Product formation and reversible reaction rate constants have been evaluated. The rate constants for SNi mechanism have been evaluated and activation parameters E a, ΔH #, and ΔS # are determined.  相似文献   

9.
The equilibrium molalities of In3+ in extraction reaction: In3+(aq)+3HOx(org) = In(Ox)3(org) + 3H+(aq) were measured at ionic strengths from 0.13 to 2.54 mol·kg?1 in the aqueous phase containing Na2SO4 as the supporting electrolyte and at constant initial molality of extractant, HOx, in the organic phase at temperatures from 278.15 to 308.15 K, where HOx and Ox mean 8-hydroxy-quinoline and its anion, respectively. The standard extraction constants K at various temperatures were obtained by two methods proposed in our previous paper.  相似文献   

10.
Abstract

Dedicated to Professor Arthur Martell on the occasion of his seventy fifth birthday.

The complexes of In(III) and Ga(III) with a variety of nitrogen donor ligands were studied in aqueous solution by glass electrode potentiometry at 25°C in 0.1 M NaNO3. The ligands were 2-aminomethylpyri-dine (AMPY), ethylenediamine (EN), N,N,N',N'-tetrakis(2-hydroxypropyl)ethylenediamine (THPED), and N,N-bis(2-hydroxyethyl)glycine (BICIN). A variety of mixed ligand complexes of the MLOH type were detected with many of the above ligands as L. The logK1 values obtained were with Ga(III) 8.40 (AMPY), 7.94 (THPED) 12.72 (EN), and In(III) 7.6 (AMPY), 8.20 (THPED), and 7.06 (BICIN). These formation constants are discussed in relation to previous predictions that In(III) and Ga(III) would have a substantial chemistry with nitrogen donor ligands. Of particular interest is the Ga(III) system with EN, where a very stable Ga(EN)3+ complex is formed, but no higher complexes except for hydrolyzed species such as Ga(EN)OH2+ and Ga(EN)(OH)2 +.  相似文献   

11.
Summary The synergistic mixture comprising picrolonic acid (HPA) and benzo-15-crown-5 (B15C5) in chloroform has been used for the extraction of Ce(III), Eu(III) and Tm(III) as representatives of lanthanide(III) ions from pH 1-2 solutions having ionic strength of 0.1 mol. dm-3(K+/H+, Cl-). The composition of the extracted species has been determined as M(PA)3. nB15C5 where M is Ce, Eu and Tm and n=1 or 2. The influence of various anions and cations on the extraction of these ions has also been studied and only oxalate, cyanide and tartrate have some deleterious effect. The extraction equilibrium constants have been evaluated and discussed.  相似文献   

12.
Summary The reduction of chloro-, bromo- and iodopentacyanocobaltate(III) anions by aquatitanium(III) has been studied in aqueous solution with ionic strength, I = 1.0 mol dm-3 (LiCl, KBr or KI) at T = 25 °C. The dependence of the observed second-order rate constant, k obs, on [H+] has been investigated over the acid range 0.005–0.100 mol dm –3 and is of the general limiting form: k obs k 0 + k[H +] –1, where k 0 is appreciable in all cases and k is a composite rate constant. Using values of K a (associated with the TiIII hydrolytic equilibrium constant), obtained from the kinetic data for the TiIII/CoIII redox reactions, and comparison of the rate constants obtained with those for the corresponding VII reductions of the same CoIII complexes, it is concluded that the TiIII reductions of these halopentacyanocobaltate(III) complexes proceed via an outer-sphere mechanism.Author to whom all correspondence should be directed, who is presently on leave of absence from Obafemi Awolowo University.  相似文献   

13.
New chromium(III) complexes, [Cr(C2O4)2(2-hnic)]2− and [Cr(C2O4)2(3-hpic)]2− (where 2-hnic = O,O′-bonded 2-hydroxynicotinic acid and 3-hpic = N,O-bonded 3-hydroxypicolinic acid), were obtained and characterized in solution. The acid-catalyzed aquation of the both complexes leads to liberation of the appropriate pyridinecarboxylic acid and formation of cis-[Cr(C2O4)2(H2O)2]. Kinetics of these reactions were studied spectrophotometrically in the 0.1–1.0 M HClO4 range, at I = 1.0 M. In the case of [Cr(C2O4)2(2-hnic)]2−, a slow chelate-ring opening at the Cr–O (phenolate) bond is followed by a fast Cr–O (carboxylate) bond breaking. The rate law: kobs = kHQH[H+] was established, where kH is the acid-catalyzed rate constant and QH is the protonation constant of the coordinated phenolate oxygen atom. In the case of [Cr(C2O4)2(3-hpic)]2−, the reversible chelate-ring opening at Cr–N bond is followed by the rate determining step – the one-end bonded ligand liberation. The rate law for the first step was determined: kobs = k1+k−1/Q1[H+], where k1 and k−1 are the rate constants of the chelate-ring opening and closure and Q1 is the protonation constant of the pyridine nitrogen atom. The aquation mechanisms are proposed and the effect of ligand coordination mode on complex reactivity is discussed.  相似文献   

14.
Summary A kinetic study of the oxidation of chromium(III) by N-bromosuccinimide (NBS) in aqueous solutions and H2O-MeOH solvent mixtures were performed. The kinetics in aqueous solutions obeyed the rate law: d[CrVI]/dt = {k 4 K h K 2[NBS][CrIII]T}/[+]{1 + K h/[H+] + (K 1 + K h K 2/[H+][NBS])} where K h, K 1 and K 2 are the hydrolysis constant of [CrIII(H2O)6]3+, and pre-equilibrium formation constants for the protonated and deprotonated precursor complexes, respectively. An innersphere mechanism is proposed. An argument based on isokinetic correlations among activation parameters for the oxidation of a series of cobalt(II) and chromium(III) complexes including [Cr(H2O)6]3+ is presented in support of a common mechanism for these reactions. Abstracted from the Ph.D. Thesis (Ain Shams University) of A. E.-D. M. Abdel-Hady.  相似文献   

15.
Regression analysis was used to derive equations for estimaing thermodynamic stability constants for complexes of Cr2+ (log° 1[Cr2+L] = 0.53log° n [H n L]) and Cr3+ (log° 1[Cr3+L] = 0.88log° n [H n L]) from the known protonation constants of H n L ligands and for determining stability constants of Cr2+ and Cr3+ complexes from the available stability constants of Cu2+ complexes (log° 1[Cr2+L] = 0.76log° 1[Cu2+L] and log° 1[Cr2+L] = 0.60log° 1[Cr3+L], respectively). Parameters of the Panteleon–Ecka equation for calculating stability constants of Cr2+ complexes ( = 0.57) and Cr3+ complexes ( = 0.69) with two and three bidentate ligands were also determined. The ratio of logarithmic stability constants for complexes with the same metals but with different metal ionic charges was found to be approximately equal to the ratio of charges on the central ions. The stability constant of Cr(II) sulfate complex was calculated.  相似文献   

16.
The kinetics of ternary complex formation involving Cu(5-X-1, 10-phen) and threonine (CuAL, A=5-X-1, 10-phen; L=threonine or represented by O-N; X=NO2, Cl, H, CH3) has been studied by temperature-jump and stopped-flow methods. The formation rate constants, kf(M?1·s?1), for the complexation reaction, CuA + L CuAL, are as follows; X=NO2, 8.68×108; X = Cl, 7.13×108; X=H, 6.12×108; X=CH3, 5.42×108. The rate constants for zwitterion attack are nil within experimental error. It has been found that a linear free energy relationship exists between the stability (logKCuACuAL) of the complexes CuAL and log kf as follows: logKCuACuAL = 0.13+0.83 logkf, r = 0.99. It suggested that the formation rate governed the stability of the ternary complexes. The rates of formation of the ternary complexes increased with decreasing electron-donating property of the substituents. A linear relationship was found to exist as expressed by the following equation: log(kRf/KOf = 0.097σ, r = 0.96. A mechanism involves a rapid equilibrium between CuA and L followed by a slow ring closure of L.  相似文献   

17.
The rate constants for the quenching of O2(1Δg) with carbon disulfide, dimethyl sulfide, dimethyl disulfide, diallyl disulfide, ethyl mercaptan, and thiophene have been determined in a discharge flow system in the absence of oxygen atoms. The rate constants are found to be (6.5 ± 0.6) × 104, (1.8 ± 0.2) × 104, and (3.5 ± 0.6) × 103 L/mol · s for dimethyl sulfide, ethyl mercaptan, and thiophene, respectively. The other compounds have rate constants <9.9 × 102 L/mol · s. In the case of dimethyl sulfide, even when NO2 concentration is more than what is required to remove oxygen atoms completely, the rate constants are found to vary with different amounts of NO2. No correlation is found to exist between the logarithm of the rate constants and the ionization potentials of the compounds.  相似文献   

18.
The formation of iron(III) complexes with chelating azidokojate anions L was investigated in aqueous solutions as a function of the pH and the c(Fe3+):c(HL) molar ratio. Based on the stability constants, the distribution among the above complexes, [Fe(H2O)6]3+, and [Fe(H2O)5(OH)]2+ were calculated in solutions of various compositions. The complexes are redox stable in aqueous solutions both in the dark and in visible laboratory light. Properties of the investigated azidokojic acid and its iron(III) complexes are compared with those required for therapeutic applications as alternative iron chelators.  相似文献   

19.
The acido‐basic and the complexation properties of di‐, tri‐, and tetra‐phosphonic acids (H6L1, H8L2, and H10L3) toward Fe(III) and Cu(II) were determined by potentiometric titration in aqueous media at 25.0 ± 0.1°C with constant ionic strength (0.1 M, NaClO4). We have determined six, ten, and eight pKa values for the di, tri, and tetra‐phosphonic acids, respectively. In acidic conditions, e.g., 0 ≤ pH ≤ 5; iron and copper presented a high affinity toward these ligands to give complex species. With the ligand H10L3, [FeL3H7], and [CuL3H6]2− were easily obtained at pH 1.8 and 2.7, respectively. We have determined ten stability constants for the H10L3/Fe system and nine for the H10L3/Cu one; six and four in the cases of H8L2/Fe and H8L2/Cu systems, respectively. Finally, five stability constants were calculated for the H6L1/Fe system and four for the H6L1/Cu one. We have not observed any insoluble species in these complexes in acidic medium as well as in alkaline solutions. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:51–62, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20575  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号