首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the importance of B1 and B6 vitamins for human health it is useful to develop new cheap and rapid methods for their determination. Voltammetric behavior of these vitamins on a pencil graphite electrode was investigated using cyclic voltammetry in different media. Direct quantitative determination of the two vitamins, one in the presence of the other, was done by differential pulse voltammetry. Vitamin B1 was electroactive only in a NaOH solution generating two irreversible oxidation peaks; the first peak obtained at 250 mV is well-defined and was used in quantitative determinations. In case of vitamin B6, a well-defined oxidation peak was observed in all investigated supporting electrolytes except for HCl. The linear concentration ranges were 10?5–10?3 M for vitamin B1 in a NaOH solution and 5 × 10?6–10?3 M for vitamin B6 in an acetate buffer solution. The obtained detection limits were 5.34 × 10?6 M and 2.81 × 10?6 M for vitamin B1 and vitamin B6, respectively. The developed method is simple and rapid and it was successfully applied in the determination of the two vitamins in pharmaceuticals.  相似文献   

2.
Solid solutions based on cesium monogallate CsGaO2 are synthesized in the Ga2O3-TiO2-Cs2O system. Their crystalline structure and also temperature and concentration conductivity dependences are studied. The cesium cation character of conductivity is confirmed. The most conducting samples contain an excess of cesium oxide and have the structure of high-temperature γ-modification of KAlO2. Their specific conductivity is (5.0–6.7) × 10?3 S cm?1 at 400 °C, (2.5–5.0) × 10?2 S cm?1 at 700°C at the activation energy of 33–35 kJ/mol?1.  相似文献   

3.
The preparation of a carbon ceramic electrode modified with SnO2 (CCE/SnO2) using tin dibutyl diacetate as precursor was optimized by a 23 factorial design. The factors analyzed were catalyst (HCl), graphite/organic precursor ratio, and inorganic precursor (dibutyltin diacetate). The statistical treatment of the data showed that only the second-order interaction effect, catalyst × inorganic precursor, was significant at 95% confidence level, for the electrochemical response of the system. The obtained material was characterized by scanning electron microscopy (MEV), X-ray diffraction (XRD), RAMAN spectroscopy, XPS spectra, and voltammetric techniques. From the XPS spectra, it was confirmed the formation of the Si–O–Sn bond by the shift in the binding energy values referred to Sn 3d3/2 due to the interaction of Sn with SiOH species. The incorporation of SnO2 provided an increment of the electrode response for levofloxacin, with Ipa = 147.0 μA for the ECC and Ipa = 228.8 μA for ECC/SnO2, indicating that SnO2 when incorporated into the silica network enhances the electron transfer process. Under the optimized working conditions, the peak current increased linearly with the levofloxacin concentration in the range from 6.21×10?5 to 6.97×10?4 mol L?1 with quantification and detection limits of 3.80×10?5 mol L?1 (14.07 mg L?1) and 1.13×10?5 mol L?1 (4.18 mg L?1), respectively.  相似文献   

4.
A new type of graphene-Co3O4 functionalized porphyrin was synthesized and used for selective and sensitive detection of methyl parathion (MP). Co3O4 nanoparticles were firstly modified onto graphene oxide sheets and the porphyrin/Co3O4/graphene nanocomposites were then synthesized by self-assembly decoration of anion porphyrin on Co3O4-modified graphene sheets by π–π stacking. By dexterously controlling the electrochemical reduction variables and optimizing the electrode preparation parameters, with the satisfactory conductivity, strong adsorption toward MP, the developed novel sensor fabricated with the as-synthesized nano-assembly for determination of MP shows some satisfactory properties such as a wide linear concentration range (from 4.0?×?10?7 M to 2.0?×?10?5 M), low detection limit (1.1?×?10?8 M), favorable repeatability, long-time storage stability, and satisfactory anti-interference ability. It also had high precision for the real sample analysis, which indicated the good perspective for field application.  相似文献   

5.
Properties of CF x /Li and CF x /Na cells were examined while using galvanostatic charging/discharging, electrochemical impedance spectroscopy and scanning electron microscopy (SEM). The capacity during the first cycle was as high as ca. 1000 mAh g?1. Such an electrode is suitable for primary CF x /Li and CF x /Na batteries. SEM images of CF x cathode showed that during discharging it was transformed into amorphous carbon and LiF or NaF crystals (of diameter of ca. 5–20 μm). These systems (C?+?LiF or C?+?NaF) cannot be reversibly converted back into CF x /Li or CF x /Na, respectively. Exchange current densities are between 10?7 Acm?2 and 10?9 Acm?2 when working with LiPF6 and NaPF6 electrolytes (1.12?×?10?7 Acm?2 and 6.82?×?10?9 Acm?2, respectively). Those values are low and indicate that the charge transfer process may be the rate-determining step. Activation energies for the charge transfer process were 57 and 72 kJ mol?1 for CF x /LiPF6 and CF x /NaPF6 systems, respectively. Higher activation energy barrier for the CF/Na+?+?e??→?C?+?NaF reaction results in lower observed exchange current density in comparison to the system with lithium ions.  相似文献   

6.
Transport properties of ionic salt CsH5(PO4)2 are studied by the impedance method. The salt’s bulk conductivity ranges from 10?8 to 10?4 S cm?1 in the temperature interval 90 to 145°C. The apparent activation energy is high (1.6–2.0 eV). The conductivity is slightly anisotropic: it is maximum in the [001] direction and minimum in the [100] direction (~5.6 and 1 times × 10?6 S cm?1, respectively, at 130°C). The conductivity of polycrystalline samples is higher by 1–2 orders of magnitude, and the activation energy drops to 1.05 eV due to the formation of a pseudoliquid layer with a high proton mobility at the intercrystallite boundary. The salt’s thermodynamic properties are examined by differential scanning calorimetry and thermogravimetry. No phase transitions are discovered in the salt up to the melting point (151.6°C), with the melting enthalpy equal to ~34 kJ mol?1. The crystallization occurs at lower temperatures (107°C) and the crystallization enthalpy (?18 kJ mol?1) is lower than the melting enthalpy. The melting is accompanied by slow decomposition of the salt. Factors affecting the proton transport in the salt are analyzed.  相似文献   

7.
In this work, we described an electrochemical sensor using a nanocomposite based on graphene oxide (GO), silver nanoparticles (AgNP), and disordered mesoporous silica (SiO2), which was used for the determination of bisphenol A in water samples. Initially, the hybrid material SiO2/GO was synthesized via sol-gel process, subsequently decorated with AgNP with an approximate 20 nm particle size prepared directly on the surface of the SiO2/GO using N, N-dimethylformamide (DMF) as an agent reducer. A glassy carbon electrode was modified with SiO2/GO/AgNP and used in developing a sensitive electrochemical sensor for the determination of bisphenol A in phosphate buffer 0.1 mol L?1 (pH 7.0). The detection limit was 45.2 nmol L?1 with a linear response range between 1.0 × 10?7 and 2.6 × 10?6 mol L?1 and a sensitivity of 1.27 × 10?7 A mol?1 L. Finally, the optimized electrochemical sensor was used for the quantitation of endocrine interfering in natural waters.  相似文献   

8.
The Li(Ni0.33Co0.33Mn0.33)O2 (LNCMO) cathode material is prepared by poly(vinyl pyrrolidone) (PVP)-assisted sol-gel/hydrothermal and poly(ethylene glycol)-block-poly(propylene glycol)-block-poly (ethylene glycol) (Pluronic-P123)-assisted hydrothermal methods. The compound prepared by PVP-assisted hydrothermal method shows a comparatively higher electrical conductivity of ~2?×?10?5 S cm?1 and exhibits a discharge capacity of 152 mAh g?1 in the voltage range of 2.5 to 4.4 V, for a C-rate of 0.2 C, whereas the compounds prepared by P123-assisted hydrothermal method and PVP-assisted sol-gel method show a total electrical conductivity in the order of 10?6 S cm?1 and result in poor electrochemical performance. The structural and electrical properties of LNCMO (active material) and its electrochemical performance are correlated. The difference in percentage of ionic and electronic conductivity contribution to the total electrical conductivity is compared by transference number studies. The cation disorder is found to be the limiting factor for the lithium ion diffusion as determined from ionic conductivity values.  相似文献   

9.
A novel sandwich-structured nanocomposite based on Ti2NbO7? nanosheets and cobalt porphyrin (CoTMPyP) was fabricated through electrostatic interaction, in which CoTMPyP has been successfully inserted into the lamellar spacing of layered titanoniobate. The resultant Ti2NbO7/CoTMPyP nanocomposite was characterized by XRD, SEM, TEM, EDS, FT-IR, and UV-vis. It is demonstrated that the intercalated CoTMPyP molecules were found to be tilted approximately 63° against Ti2NbO7? layers. The glass carbon electrode (GCE) modified by Ti2NbO7/CoTMPyP film showed a fine diffusion-controlled electrochemical redox process. Furthermore, the Ti2NbO7/CoTMPyP-modified electrode exhibited excellent electrocatalytic oxidation activity of ascorbic acid (AA). Differential pulse voltammetric studies demonstrated that the intercalated nanocomposite detects AA linearly over a concentration range of 4.99?×?10?5 to 9.95?×?10?4 mol L?1 with a detection limit of 3.1?×?10?5 mol L?1 at a signal-to-noise ratio of 3.0.  相似文献   

10.
Composites ZrO2-(Bi2CuO4+ 20 wt % Bi2O3) (50–80 vol % ZrO2) are synthesized and their physicochemical properties are studied. It is demonstrated that the composites comprise triple-phase mixtures of ZrO2 of a monoclinic modification, Bi2CuO4, and solid solution Bi2?x Zr x O3 + x/2 and retain their mechanical strength up to 800°C. Impedance spectroscopy is used to examine their electroconductivity at 700–800°C in the interval of partial oxygen pressures extending from 37 to 2.1 × 104 Pa. Contributions made by electronic and ionic constituents to their overall conductivity are evaluated. The best specimens’ conductivity is ~0.01 S cm?1, with the electronic and ionic transport numbers nearly equal. The composite consisting of 50 vol % ZrO2 and 50 vol % (Bi2CuO4 + 20 wt % Bi2CuO4) is tested in the role of an oxygen-separating membrane. The selective flux of oxygen in the temperature interval 750–800°C amounts to (2.2–6.3) × 10?8 mol cm?2 s?1, testifying that these materials may be used as gas-separating membranes.  相似文献   

11.
The virgin activated carbon (AC) was oxidized by 30% H2O2 under the ultrasonic condition for 6 h (denoted as AC-6). The electrochemical response of Pb2+ at the AC-6 modified paste electrode was investigated, suggesting that AC-6 shows much higher accumulation efficiency to trace levels of Pb2+. Based on this, a sensitive and convenient electrochemical method was developed for the determination of Pb2+ utilizing the excellent properties of AC-6. In pH 3.6 HAc-NaAc buffer, Pb2+ was easily accumulate at the surface of AC-6 modified paste electrode, then reduced to Pb at −1.20 V. During the following anodic sweep, the reduced Pb was oxidized and resulted in an oxidation stripping peak at −0.58 V. The stripping peak current is proportional to the concentration of Pb2+ over the range from the 8.0 × 10−9 to 2.0 × 10−6 mol l−1, and the limit of detection is as low as 2.0 × 10−9 mol l−1. Finally, this newly-developed method was successfully employed to determine Pb2+ in water samples.  相似文献   

12.
The authors describe a cataluminescence (CTL) based sensing method via signals generated at the surface of In3LaTi2O10 nanoparticles for simultaneous determination of trimethylamine, formaldehyde and benzene in air. The analytical wavelengths are 340 nm, 440 nm and 600 nm, and the best surface temperature of the catalytic material is 275 °C. The limits of detection of this method are 0.3 mg?m?3 for trimethylamine, 0.07 mg?m?3 for formaldehyde, and 0.2 mg?m?3 for benzene. The linear ranges of CTL intensity versus gas/vapor concentration are from 1.0 to 65.1 mg?m?3 for trimethylamine, from 0.2 to 72.5 mg?m?3 for formaldehyde, and from 0.5 to 77.5 mg?m?3 for benzene. The recoveries after testing 10 standard samples ranged from 98.1% to 102.6% for trimethylamine, from 98.1% to 102.6% for formaldehyde, and from 97.7% to 103.8% for benzene. Gaseous ammonia, acetaldehyde, toluene, ethylbenzene, ethanol, sulfur dioxide and carbon dioxide do not interfere. The relative deviation of the CTL signals after 200 h of continuous detection of trimethylamine, formaldehyde and benzene is <3%.
Graphical abstract Schematic of a cataluminescence (CTL) based method for simultaneous determination of trimethylamine (TMA), formaldehyde (HCHO) and benzene (C6H6) in air. The linear ranges of CTL intensity versus gas/vapor concentration are from 1.0 to 65.1 mg?m?3 for TMA, from 0.2 to 72.5 mg?m?3 for HCHO, and from 0.5 to 77.5 mg?m?3 for C6H6.
  相似文献   

13.
A polyoxometalate-nanocarbon composite, PMo11V@N-CNT, was prepared by a simple procedure which consisted of the immobilization of phosphovanadomolybdate (PMo11V) onto N-doped carbon nanotubes (N-CNT). The FTIR and XPS characterizations confirmed its successful synthesis. The cyclic voltammograms of glassy carbon electrode (GCE) modified with PMo11V and PMo11V@N-CNT showed four Mo-centred redox processes (MoVI/V) and a vanadium redox process (VV/IV). All were surface-confined redox processes. Additionally, PMo11V@N-CNT/GCE showed good stability and well-resolved redox peaks with high current intensities. The electrocatalytic sensing properties of PMo11V@N-CNT/GCE towards acetaminophen (AC) in the presence of tryptophan (TRP) were evaluated by square wave voltammetry. Under the conditions used, the peak current increased linearly with AC concentration in the presence of TRP, with a linear range from 1.5 × 10?6 to 3.9 × 10?4 mol dm?3 and a detection limit of 1.0 × 10?6 mol dm?3.  相似文献   

14.
The impedance spectra of CeF3/CeF3 bicrystal (two single crystals separated by a single intercrystalline boundary) between Ag-electrodes are studied over a 135 to 410 K temperature interval (including temperatures below room temperature). The bicrystal was prepared by thermal-diffusion welding under a pressure of 1.5 × 107 Pa at 1473 K in vacuum (∼10−2 Pa). It is shown that the intercrystalline boundary affects but insignificantly the bicrystal bulk impedance. The CeF3/CeF3 ionic conductivity is 3 × 10−6 S/cm at 293 K; it is mainly determined by transfer processes in the single crystal bulk.  相似文献   

15.
The new phosphate Cs2Mn0.5Zr1.5(PO4)3 was synthesized for the first time and characterized by X-ray diffraction. Its crystal structure was refined in space group P213, Z = 4 at 25°C (a = 10.3163(1) Å, V = 1097.93(1) Å3), by the Rietveld method using the powder X-ray diffraction data. The structure is built of an octahedral-tetrahedral framework {[Mn0.5Zr1.5(PO4)3]2?}3∞ with cesium atoms being located in large cavities. The hydrolytic stability of the powdered phosphate containing 137Cs radionuclide was studied. The minimum achieved 137Cs leaching rate was 4 × 10?8 g/cm2 day.  相似文献   

16.
A novel carbon paste electrode modified with ZrO2 nanoparticles and an ionic liquid (n-hexyl-3- methylimidazolium hexafluorophosphate) was fabricated. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of dopamine and uric acid is described. The electrode was also employed to study the electrochemical oxidation of dopamine and uric acid, using cyclic voltammetry, chronoamperometry and square wave voltammetry as diagnostic techniques. Square wave voltammetry exhibits linear dynamic range from 1.0 × 10?6 to 9.0 × 10?4 M for dopamine. Also, square wave voltammetry exhibits linear dynamic range from 9.0 × 10?6–1.0 × 10?3 M for uric acid. The modified electrode displayed strong function for resolving the overlapping voltammetric responses of dopamine and uric acid into two well-defined voltammetric peaks. In the mixture containing dopamine and uric acid, the two compounds can be well separated from each other with potential difference of 155 mV, which is large enough to determine dopamine and uric acid individually and simultaneously. Finally, the modified electrode was used for determination of dopamine and uric acid in real samples.  相似文献   

17.
A sensitive and convenient method for the determination of trace europium ions using an oscillating chemical reaction involving Ce(IV) - KBrO3 - acetone - oxalic acid - H2SO4 was proposed. The results indicated that the changes in oscillating period (T) was linearly proportional to the negative logarithmic concentration of Eu3+ (-log C) in the range of 1.41 × 10−8 ˜ 1.41 × 10−4 mol L−1 (r = 0.9982) with a detection limit of 1.04 × 10−9 mol L−1. The recoveries were limited to the range of 99.5% to 100.8%. Under the same conditions, other rare earth ions did not interfere with the determination of Eu3+. In addition, a perturbation mechanism was also discussed briefly.   相似文献   

18.
A carbon paste electrode (CPE) modified with Fe3O4 nanoparticles (Fe3O4 NP) and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (IL BMI.PF6) was employed for the electroanalytical determination of estrone (E1) by square-wave voltammetry (SWV). At the modified electrode, cyclic voltammograms of E1 in B–R buffer (pH 12.0) showed an adsorption-controlled irreversible oxidation peak at around +0.365 V. The anodic current increased by a factor of five times and the peak potential shifted 65 mV to less positive values compared with the unmodified CPE. Under optimized conditions, the calibration curve obtained showed two linear ranges: from 4.0 to 9.0 μmol L?1 and from 9.0 to 100.0 μmol L?1. The limits of detection (LOD) and quantification (LOQ) attained were 0.47 and 4.0 μmol L?1, respectively. The proposed modified electrode was applied to the determination of E1 in pork meat samples. Data provided by the proposed modified electrode were compared with data obtained by UV–vis spectroscopy. The outstanding performance of the electrochemical device indicates that Fe3O4 NP and the IL BMI.PF6 are promising materials for the preparation of chemically modified electrodes for the determination of E1.  相似文献   

19.
A new cobalt (II) coordination compound was synthesized using proton transfer mechanism. The reaction between CoCl2·2H2O, Salicylic acid (H2Sal) and acridine (Acr) gave a new coordination compound formulated as (HAcr)4[Co(Sal)3], which was characterized by elemental analysis, NMR, IR and UV/Vis spectroscopies. The interaction of this complex with DNA has been investigated in vitro using UV absorption, fluorescence spectroscopy, viscosity measurements and gel electrophoresis methods. The intrinsic binding constant has been estimated to be 5.8 × 105 M?1 using UV absorption. The interaction of DNA–Co (II) complex caused quenching in fluorescence. The binding constant, the number of binding site and Stern–Volmer quenching constant have been calculated to be 7.7 × 104 M?1, 1.143 and 1.5 × 104 Lmol?1, respectively. The increase in the viscosity of DNA with increasing the concentration of the Co (II) complex and the observations of other experiments suggest that the cobalt (II) complex binds to DNA by partial intercalation binding mode. Furthermore, the interaction of DNA–Co (II) complex was confirmed using gel electrophoresis studies. Moreover, molecular docking technique predicted partial intercalation binding mode for the complex.  相似文献   

20.
Perovskite phases Ba3In2ZrO8 and Ba4In2Zr2O11 with the nominal concentration of structural oxygen vacancies 1/9 and 1/12, respectively, were synthesized by solid-phase and solution methods. X-ray diffraction showed cubic symmetry of both phases with the unit cell parameter a = 0.4193(2) and 0.4204(3) nm, respectively. The absence of superstructural lines resulted in the conclusion on statistical arrangement of oxygen vacancies. Thermogravimetry and mass spectrometry proved that both phases can reversibly absorb water from gas phase (pH2O = 2 × 10−2 atm) with observed correlation between the concentration of oxygen vacancies and amount of absorbed water. The total water amount was up to 0.9 mol per formula unit or, if recalculated for perovskite unit ABO3, 0.3 and 0.23 mol H2O, respectively. The temperature curves of coductivity in the atmosphere with various partial water vapor pressures (pH2O = 3 × 10−5 and 2 × 10−2 atm) showed significantly higher conductivity and lower activation energy (0.52 eV) in humid atmosphere due to proton transfer. The proton conductivity is up to 5 × 10−4 Ohm−1 cm−1 at 300°C for Ba3In2ZrO8 specimen. IR spectrometry showed that protons in the structure exist primarily in OH-groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号