首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The thermal decomposition of trifluoromethoxycarbonyl peroxy nitrate, CF3OC(O)O2NO2, has been studied between 278 and 306 K at 270 mbar total pressure using He as a diluent gas. The pressure dependence of the reaction was also studied at 292 K between 1.2 and 270 mbar total pressure. The rate constant reaches its high‐pressure limit at 70 mbar. The first step of the decomposition leads to CF3OC(O)O2 and NO2 formation, that is, CF3OC(O)O2NO2 + M ? CF3OC(O)O2 + NO2 + M (k1, k?1). Reaction (?1) was prevented by adding an excess of NO that reacts with the peroxy radical intermediate and leads to carbonyl fluoride (CF2O), carbon dioxide (CO2), nitrogen dioxide (NO2), and small quantities of CF3OC(O)O2C(O)OCF3. The kinetics of reaction (1) was determined by following the loss of CF3OC(O)O2NO2 via IR spectroscopy. The temperature dependence of the decomposition follows the equation k1(T) = 1.0 × 1016 e?((111±3)/(RT)) for the exponential term expressed in kJ mol?1. The values obtained for the kinetic parameters such as k1 at 298 K, the activation energy (Ea), and the preexponential factor (A) are compared with literature data for other acyl peroxy nitrates. The atmospheric thermal stability of CF3OC(O)O2NO2 and its dependence with altitude is discussed. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 831–838, 2008  相似文献   

2.
The gas phase reaction of the hydroxyl radical with the unsaturated peroxyacyl nitrate CH2 ? C(CH3)C(O)OONO2 (MPAN) has been studied at 298 ± 2 K and atmospheric pressure. The OH-MPAN reaction rate constant relative to that of OH + n-butyl nitrate is 2.08 ± 0.25. This ratio, together with a literature rate constant of 1.74 × 10?12 cm3 molecule?1 s?1 for the OH + n-butyl nitrate reaction at 298 K, yields a rate constant of (3.6 ± 0.4)× 10?12 cm3 molecule?1 s?1 for the OH-MPAN reaction at 298 ± 2 K. Hydroxyacetone and formaldehyde are the major carbonyl products. The yield of hydroxyacetone, 0.59 ± 0.12, is consistent with preferential addition of OH at the unsubstituted carbon atom. Atmospheric persistence and removal processes for MPAN are briefly discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
Pulse radiolysis was used to study the kinetics of the reactions of CH3C(O)CH2O2 radicals with NO and NO2 at 295 K. By monitoring the rate of formation and decay of NO2 using its absorption at 400 and 450 nm the rate constants k(CH3C(O)CH2O2+NO)=(8±2)×10−12 and k(CH3C(O)CH2O2+NO2)=(6.4±0.6)×10−12 cm3 molecule−1 s−1 were determined. Long path length Fourier transform infrared spectrometers were used to investigate the IR spectrum and thermal stability of the peroxynitrate, CH3C(O)CH2O2NO2. A value of k−6≈3 s−1 was determined for the rate of thermal decomposition of CH3C(O)CH2O2NO2 in 700 torr total pressure of O2 diluent at 295 K. When combined with lower temperature studies (250–275 K) a decomposition rate of k−6=1.9×1016 exp (−10830/T) s−1 is determined. Density functional theory was used to calculate the IR spectrum of CH3C(O)CH2O2NO2. Finally, the rate constants for reactions of the CH3C(O)CH2 radical with NO and NO2 were determined to be k(CH3C(O)CH2+NO)=(2.6±0.3)×10−11 and k(CH3C(O)CH2+NO2)=(1.6±0.4)×10−11 cm3 molecule−1 s−1. The results are discussed in the context of the atmospheric chemistry of acetone and the long range atmospheric transport of NOx. © John Wiley & Sons, Inc. Int J Chem Kinet: 30: 475–489, 1998  相似文献   

4.
Based on an FTIR-product study of the photolysis of mixtures containing Br2? CH3CHO and Br2? CH3CHO? HCHO in 700 torr of N2, the rate constant for the reaction Br + CH3CHO → HBr + CH3CO was determined to be 3.7 × 10?12 cm3 molecule?1 s?1. In addition, the selective photochemical generation of Br at λ > 400 nm in mixtures containing Br2? CH3CHO? 14NO2 (or 15NO2)? O2 was shown to serve as a quantitative preparation method for the corresponding nitrogen-isotope labeled CH3C(O)OONO2 (PAN). From the dark-decay rates of 15N-labeled PAN in large excess 14NO2, the rate constant for the unimolecular reaction CH3C(O)OO15NO2 → CH3C(O)OO + 15NO2 was measured to be 3.3 (±0.2) × 10?4 s?1 at 297 ± 0.5 K.  相似文献   

5.
A study of the reaction initiated by the thermal decomposition of di-t-butyl peroxide (DTBP) in the presence of (CH3)2C?CH2 (B) at 391–444 K has yielded kinetic data on a number of reactions involving CH3 (M·), (CH3)2CCH2CH3 (MB·) and (CH3)2?CH2C(CH3)2CH2CH3 (MBB·) radicals. The cross-combination ratio for M· and MB· radicals, rate constants for the addition to B of M· and MB· radicals relative to those for their recombination reactions, and rate constants for the decomposition of DTBP, have been determined. The values are, respectively, where θ = RT ln 10 and the units are dm3/2 mol?1/2 s?1/2 for k2/k and k9/k, s?1 for k0, and kJ mol?1 for E. Various disproportionation-combination ratios involving M·, MB·, and MBB· radicals have been evaluated. The values obtained are: Δ1(M·, MB·) = 0.79 ± 0.35, Δ1(MB·, MB·) = 3.0 ± 1.0, Δ1(MBB·, MB·) = 0.7 ± 0.4, Δ1(M·, MBB·) = 4.1 ± 1.0, Δ1(MB·, MBB·) = 6.2 ± 1.4, and Δ1(MBB·, MBB·) = 3.9 ± 2.3, where Δ1 refers to H-abstraction from the CH3 group adjacent to the center of the second radical, yielding a 1-olefin. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
《Polyhedron》2005,24(3):427-433
The synthesis of complexes between lanthanide nitrates and MeC(CH2P(O)Ph2)3 (=L) in ethanol or methanol leads to the formation of polymeric complexes Ln(NO3)3L as alcohol solvates. The ligand adopts a chelating–bridging mode. The structures of the complexes La(NO3)3L · EtOH and Pr(NO3)3L · MeOH are reported and the coordination of L is discussed in terms of that of the related free ligand EtC(CH2P(O)Ph2)3. Infrared spectroscopy implies structural differences between the early and later lanthanide complexes.  相似文献   

7.
Pulse radiolysis techniques were used to measure the gas phase UV absorption spectra of the title peroxy radicals over the range 215–340 nm. By scaling to σ(CH3O2)240 nm = (4.24 ± 0.27) × 10?18, the following absorption cross sections were determined: σ(HO2)240 nm = 1.29 ± 0.16, σ(C2H5O2)240 nm = 4.71 ± 0.45, σ(CH3C(O)CH2O2)240 nm = 2.03 ± 0.22, σ(CH3C(O)CH2O2)230 nm = 2.94 ± 0.29, and σ(CH3C(O)CH2O2)310 nm = 1.31 ± 0.15 (base e, units of 10?18 cm2 molecule?1). To support the UV measurements, FTIR‐smog chamber techniques were employed to investigate the reaction of F and Cl atoms with acetone. The F atom reaction proceeds via two channels: the major channel (92% ± 3%) gives CH3C(O)CH2 radicals and HF, while the minor channel (8% ± 1%) gives CH3 radicals and CH3C(O)F. The majority (>97%) of the Cl atom reaction proceeds via H atom abstraction to give CH3C(O)CH2 radicals. The results are discussed with respect to the literature data concerning the UV absorption spectra of CH3C(O)CH2O2 and other peroxy radicals. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 283–291, 2002  相似文献   

8.
The formation of CH(3) in the 248 or 266 nm photolysis of acetone (CH(3)C(O)CH(3)), 2-butanone (methylethylketone, MEK, CH(3)C(O)C(2)H(5)) and acetyl bromide (CH(3)C(O)Br) was examined using the pulsed photolytic generation of the radical and its detection by transient absorption spectroscopy at 216.4 nm. Experiments were carried out at room temperature (298 +/- 3 K) and at pressures between approximately 5 and 1500 Torr N(2). Quantum yields for CH(3) formation were derived relative to CH(3)I photolysis at the same wavelength in back-to-back experiments. For acetone at 248 nm, the yield of CH(3) was greater than unity at low pressures (1.42 +/- 0.15 extrapolated to zero pressure) confirming that a substantial fraction of the CH(3)CO co-product can dissociate to CH(3) + CO under these conditions. At pressures close to atmospheric the quantum yield approached unity, indicative of almost complete collisional relaxation of the CH(3)CO radical. Measurements of increasing CH(3)CO yield with pressure confirmed this. Contrasting results were obtained at 266 nm, where the yields of CH(3) (and CH(3)CO) were close to unity (0.93 +/- 0.1) and independent of pressure, strongly suggesting that nascent CH(3)CO is insufficiently activated to decompose on the time scales of these experiments at 298 K. In the 248 nm photolysis of CH(3)C(O)Br, CH(3) was observed with a pressure independent quantum yield of 0.92 +/- 0.1 and CH(3)CO remained below the detection limit, suggesting that CH(3)CO generated from CH(3)COBr photolysis at 248 nm is too highly activated to be quenched by collision. Similar to CH(3)C(O)CH(3), the photolysis of CH(3)C(O)C(2)H(5) at 248 nm revealed pressure dependent yields of CH(3), decreasing from 0.45 at zero pressure to 0.19 at pressures greater than 1000 Torr with a concomitant increase in the CH(3)CO yield. As part of this study, the absorption cross section of CH(3) at 216.4 nm (instrumental resolution of 0.5 nm) was measured to be (4.27 +/- 0.2) x 10(-17) cm(2) molecule(-1) and that of C(2)H(5) at 222 nm was (2.5 +/- 0.6) x 10(-18) cm(2) molecule(-1). An absorption spectrum of gas-phase CH(3)C(O)Br (210-305 nm) is also reported for the first time.  相似文献   

9.
The conformational properties of methanesulfonyl peroxynitrate, CH3S(O)2OONO2 (MSPN), and its radical decomposition products CH3S(O)2OO· and CH3S(O)2O· were studied by ab initio and density functional methods. The dihedral angle around the S–O and the O–O single bond are calculated to be ?70.5° and ?97.8° (B3LYP/6‐311++G(3df,3pd)), respectively. The principal unimolecular dissociation pathways for MSPN were studied using complete basis set (CBS) methods. The reaction enthalpies for the channels CH3S(O)2OONO2→ CH3S(O)2OO·+NO2 and CH3S(O)2OONO2→CH3S(O)2O·+NO3 were computed to be 111.0 and 140.9 kJ/mol, respectively. The enthalpies of formation at 298 K for MSPN and CH3S(O)2OO radical were predicted to be ?358.2 and ?281.3 kJ/mol, respectively.  相似文献   

10.
The thermal decomposition of cadmium acetate dihydrate in helium and in air atmosphere has been investigated by means of a coupled TG-DTA-MS method combined with X-ray diffraction analysis. Dehydration of Cd(CH3COO)2·2H2O is a two-stage process with Cd(CH3COO)2·H2O as intermediate. The way of Cd(CH3COO)2 decomposition strongly depends on the surrounding gas atmosphere and the rate of heating. CdO, acetone and CO2 are the primary products of decomposition in air. In helium decomposition goes by two parallel and consecutive reactions in which intermediates, Cd and CdCO3, are formed. Metallic cadmium oxidizes and cadmium carbonate decomposes giving CdO. Some of the metallic cadmium, depending on the heating rate and the concentration of oxygen, evaporates. Acetone is partially oxidized in secondary reactions with oxygen. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The thermal decomposition reactions of aliphatic peroxy acids containing from 8 to 16 carbon atoms in a molecule were studied. It was found that the carbon radical length had no effect on the thermal stability of peroxide groups. The apparent rate constants of thermolysis of peroxydecanoic acid in various solvents and the activation energies of the test reaction were found. The thermal degradation of peroxy acids involved secondary reactions of induced chain degradation in addition to the primary homolysis of the peroxide group. The rate constants of induced chain degradation were found.  相似文献   

12.
The solution obtained by reduction of [(triphos)CO(μ-Cl)2Co(triphos)]+2 (triphos = CH3C(CH2PPh2)3) with Na/Hg reacts with CO2, CS2 and SO2 to give (triphos)Co(O2CO), (triphos)Co(S2CO), and (triphos)Co(O2SO), respectively. The molecular structure of the last has been established by X-ray difraction.  相似文献   

13.
Haloacetyl, peroxynitrates are intermediates in the atmospheric degradation of a number of haloethanes. In this work, thermal decomposition rate constants of CF3C(O)O2NO2, CClF2C(O)O2NO2, CCl2FC(O)O2NO2, and CCl3C(O)O2NO2 have been determined in a temperature controlled 420 l reaction chamber. Peroxynitrates (RO2NO2) were prepared in situ by photolysis of RH/Cl2/O2/NO2/N2 mixtures (R = CF3CO, CClF2CO, CCl2FCO, and CCl3CO). Thermal decomposition was initiated by addition of NO, and relative RO2NO2 concentrations were measured as a function of time by long-path IR absorption using an FTIR spectrometer. First-order decomposition rate constants were determined at atmospheric pressure (M = N2) as a function of temperature and, in the case of CF3C(O)O2NO2 and CCl3C(O)O2NO2, also as a function of total pressure. Extrapolation of the measured rate constants to the temperatures and pressures of the upper troposphere yields thermal lifetimes of several thousands of years for all of these peroxynitrates. Thus, the chloro(fluoro)acetyl peroxynitrates may play a role as temporary reservoirs of Cl, their lifetimes in the upper troposphere being limited by their (unknown) photolysis rates. Results on the thermal decomposition of CClF2CH2O2NO2 and CCl2FCH2O2NO2 are also reported, showing that the atmospheric lifetimes of these peroxynitrates are very short in the lower troposphere and increase to a maximum of several days close to the tropopause. The ratio of the rate constants for the reactions of CF3C(O)O2 radicals with NO2 and NO was determined to be 0.64 ± 0.13 (2σ) at 315 K and a total pressure of 1000 mbar (M = N2). © 1994 John Wiley & Sons, Inc.  相似文献   

14.
The synthesis of ClC(O)OONO(2) is accomplished by photolysis of a mixture of Cl(2), NO(2), and CO in large excess of O(2) at about -70 degrees C. The product is isolated after repeated trap-to-trap condensation. The solid compound melts at -84 degrees C, and the extrapolated boiling point is 80 degrees C. ClC(O)OONO(2) is characterized by IR, Raman, (13)C NMR, and UV spectroscopy. According to the IR matrix spectra, the compound exists at room temperature only as a single conformer. The molecular structure of ClC(O)OONO(2) is determined by gas electron diffraction. The molecule possesses a gauche structure with a dihedral angle of phi(COON) = 86.7(19) degrees , and the C=O bond is oriented syn with respect to the O-O bond. The short O-O bond (1.418(6) A) and the long N-O bond (1.511(8) A) are consistent with the facile dissociation of ClC(O)OONO(2) into the radicals ClC(O)OO and NO(2). The experimental geometry of ClC(O)OONO(2) is reproduced reasonably well by B3LYP/6-311+G(2df) calculations, whereas the MP2 approximation predicts the N-O bond considerably too long and the dihedral angle too small.  相似文献   

15.
A normal mode analysis was made for zinc caprate with using the Wilson GF matrix method. Based on the analysis and infrared spectra, structural transition behavior of zinc caprate was discussed.  相似文献   

16.
Oxide methanesulfonates of Mo, U, Re, and V have been prepared by reaction of MoO(3), UO(2)(CH(3)COO)(2)·2H(2)O, Re(2)O(7)(H(2)O)(2), and V(2)O(5) with CH(3)SO(3)H or mixtures thereof with its anhydride. These compounds are the first examples of solvent-free oxide methanesulfonates of these elements. MoO(2)(CH(3)SO(3))(2) (Pbca, a=1487.05(4), b=752.55(2), c=1549.61(5) pm, V=1.73414(9) nm(3), Z=8) contains [MoO(2)] moieties connected by [CH(3)SO(3)] ions to form layers parallel to (100). UO(2)(CH(3)SO(3))(2) (P2(1)/c, a=1320.4(1), b=1014.41(6), c=1533.7(1) pm, β=112.80(1)°, V=1.8937(3) nm(3), Z=8) consists of linear UO(2)(2+) ions coordinated by five [CH(3)SO(3)] ions, forming a layer structure. VO(CH(3)SO(3))(2) (P2(1)/c, a=1136.5(1), b=869.87(7), c=915.5(1) pm, β=113.66(1)°, V=0.8290(2) nm(3), Z=4) contains [VO] units connected by methanesulfonate anions to form corrugated layers parallel to (100). In ReO(3)(CH(3)SO(3)) (P1, a=574.0(1), b=1279.6(3), c=1641.9(3) pm, α=102.08(2), β=96.11(2), γ=99.04(2)°, V=1.1523(4) nm(3), Z=8) a chain structure exhibiting infinite O-[ReO(2)]-O-[ReO(2)]-O chains is formed. Each [ReO(2)]-O-[ReO(2)] unit is coordinated by two bidentate [CH(3)SO(3)] ions. V(2)O(3)(CH(3)SO(3))(4) (I2/a, a=1645.2(3), b=583.1(1), c=1670.2(3) pm, β=102.58(3), V=1.5637(5) pm(3), Z=4) adopts a chain structure, too, but contains discrete [VO]-O-[VO] moieties, each coordinated by two bidentate [CH(3)SO(3)] ligands. Additional methanesulfonate ions connect the [V(2)O(3)] groups along [001]. Thermal decomposition of the compounds was monitored under N(2) and O(2) atmosphere by thermogravimetric/differential thermal analysis and XRD measurements. Under N(2) the decomposition proceeds with reduction of the metal leading to the oxides MoO(2), U(3)O(7), V(4)O(7), and VO(2); for MoO(2)(CH(3)SO(3))(2), a small amount of MoS(2) is formed. If the thermal decomposition is carried out in a atmosphere of O(2) the oxides MoO(3) and V(2)O(5) are formed.  相似文献   

17.
18.
Solvent-free Synthesis of Tetramethylammonium Salts: Synthesis and Characterization of [N(CH3)4]2[C2O4], [N(CH3)4][CO3CH3], [N(CH3)4][NO2], [N(CH3)4][CO2H], and [N(CH3)4][O2C(CH2)2CO2CH3] A general procedure to synthesize tetramethylammonium salts is presented. Several tetramethylammonium salts were prepared in a crystalline state by solvent-free reaction of trimethylamine and different methyl compounds at mild conditions: [N(CH3)4]2[C2O4] (cubic; a = 1 114.8(3) pm), [N(CH3)4][CO3CH3] (P21/n; a = 813.64(3), b = 953.36(3), c = 1 131.3(4) pm, β = 90.03(1)°), [N(CH3)4][NO2] (Pmmn; a = 821.2(4), b = 746.5(3), c = 551.5(2) pm), [N(CH3)4][CO2H] (Pmmn; a = 792.8(7), b = 791.7(3), c = 563.3(4) pm) and [N(CH3)4][O2C(CH2)2CO2CH3] (P21; a = 731.1(2), b = 826.4(3), c = 1 025.2(3) pm, β = 110.1(1)°). The tetramethylammonium salts were characterized by IR-spectroscopy and X-ray diffraction. The crystal structures of the methylcarbonate and the nitrite are described.  相似文献   

19.
Synthetic methods for several novel phosphoramidate compounds containing the P(O)NHC(O) bifunctional group were developed. These compounds with the general formula R1C(O)NHP(O)(N(R2)(CH2C6H5))2, where R1 = CCl2H, p-ClC6H4, p-BrC6H4, o-FC6H4 and R2 = hydrogen, methyl, benzyl, were characterized by several spectroscopic methods and analytical techniques. The effects of phosphorus substituents on the rotation rate around the P–Namine bond were also investigated. 1H NMR study of the synthesized compounds demonstrated that the presence of bulky groups attached to the phosphorus center and electron withdrawing groups in the amide moiety lead to large chemical-shift non-equivalence (ΔδH) of diastereotopic methylene protons. The crystal structures of CCl2HC(O)NHP(O)(NCH3(CH2C6H5))2, p-ClC6H4C(O)NHP(O)(NCH3(CH2C6H5))2, CCl2HC(O)NHP(O)(N(CH2C6H5)2)2 and p-BrC6H4C(O)NHP(O)(N(CH2C6H5)2)2 were determined by X-ray crystallography using single crystals. The coordination around the phosphorus center in these compounds is best described as distorted tetrahedral and the P(O) and C(O) groups are anti with respect to each other. In the compound Br-C6H4C(O)NHP(O)(N(CH2C6H5)2)2 (with two independent molecules in the unit cell), two conformers are connected to each other via two different N–H?O hydrogen bonds forming a non-centrosymmetric dimer. In the crystalline lattice of other compounds, the molecules form centrosymmetric dimers via pairs of same N–H?O hydrogen bonds. The structure of CCl2HC(O)NHP(O)(N(CH2C6H5)2)2 reveals an unusual intramolecular interaction between the oxygen of CO group and amine nitrogen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号