首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A two-scale second-moment turbulence closure has been derived based on the weighted integration of the dynamic equation for the covariance spectrum. The goal is to close the Reynolds stress equations with two additional scalar equations that provide separately the scales of the spectral energy transfer and of the turbulence energy dissipation rate. Such a model should provide better prediction of nonequilibrium turbulent flows. The derivation consists of analytical integration of the wave-number-weighted covariance spectrum using a model of the spectral equations with an assumed simple representation of the shape of the energy spectrum. The resulting closure consists of a set of three tensorial equations, one for the Reynolds stress and two for length scale tensors, the latter representing the energy containing- and dissipative eddies respectively. The trace of the two tensor-scale equations leads to a set of two scalar scale parameters. In the equilibrium limit, the model reduces to the standard second-moment single-scale closure. The approach makes it also possible to derive the scale equations in a more systematic manner as compared with the common single-scale and other multi-scale models. The performance of the model in capturing the scale dynamics is illustrated by predictions of several generic homogeneous and inhomogeneous unsteady flows, demonstrating the expected response of the two scale equations. PACS 03.50.De, 04.20-q, 42.65-k  相似文献   

2.
A low Reynolds number second-moment closure has been used to calculate a turbulent boundary layer which develops over a riblet surface with zero pressure gradient. The calculated mean velocity distributions compare favourably with measurements. Calculated Reynolds stresses away from the riblet surface region are also in agreement with measurements. In the vicinity of the riblets, the model reflects the increased anisotropy of the Reynolds stress tensor inadequately. Possible reasons for this shortcoming are discussed and suggestions for improving the model are made.  相似文献   

3.
A partial differential equation to compute the distance from a surface is derived and solved numerically. The benefit of such a formulation especially in combination with turbulence models is shown. The details of the formulation as well as several examples demonstrating the influence of its parameters are presented. The proposed formulation has computational advantages and can be favourably incorporated into one‐ and two‐equation turbulence models like e.g. the Spalart–Allmaras, the Secundov or Menter's SST model. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
The Elliptic Blending Reynolds Stress Model (EB-RSM), originally proposed by Manceau and Hanjalić (2002) to extend standard, weakly inhomogeneous Reynolds stress models to the near-wall region, has been subject to various modifications by several authors during the last decade, mainly for numerical robustness reasons. The present work revisits all these modifications from the theoretical standpoint and investigates in detail their influence on the reproduction of the physical mechanisms at the origin of the influence of the wall on turbulence. The analysis exploits recent DNS databases for high-Reynolds number channel flows, spanwise rotating channel flows with strong rotation rates, up to complete laminarization, and the separated flow after a sudden expansion without and with system rotation. Theoretical arguments and comparison with DNS results lead to the selection of a recommended formulation for the EB-RSM model. This formulation shows satisfactory predictions for the configurations described above, in particular as regards the modification of the mean flow and turbulent anisotropy on the anticyclonic or pressure side.  相似文献   

5.
The prediction of shock‐induced oscillations over transonic rigid airfoils is important for a better understanding of the buffeting phenomenon. The unsteady resolution of the Navier–Stokes equations is performed with various transport‐equation turbulence models in which corrections are added for non‐equilibrium flows. The lack of numerical efficiency due to the CFL stability condition is circumvented by the use of a wall law approach and a dual time stepping method. Moreover, various numerical schemes are used to try and be independent of the numerical discretization. Comparisons are made with the experimental results obtained for the supercritical RA16SC1 airfoil. They show the interest in using the SST correction or realizability conditions to get correct predictions of the frequency, amplitude and pressure fluctuations over the airfoil. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
The present study is concerned with simulating turbulent, strongly swirling flows by eddy viscosity model and Reynolds stress transport model variants adopting linear and quadratic form of the pressure–strain models. Flows with different inlet swirl numbers, 2.25 and 0.85, were investigated. Detailed comparisons of the predicted results and measurements were presented to assess the merits of model variants. For the swirl number 2.25 case, due to the inherent capability of the Reynolds stress models to capture the strong swirl and turbulence interaction, both the linear and quadratic form of the pressure–strain models predict the flow adequately. In strong contrast, the k–ϵ model predicts an excessively diffusive flow fields. For the swirl number 0.85 case, both the k–ϵ and Reynolds stress model with linear pressure–strain process, show an excessive diffusive transport of the flow fields. The quadratic pressure–strain model, on the other hand, mimics the correct flow development with the recirculating region being correctly predicted. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
8.
The purpose of this paper, dedicated to the memory of our friend Hieu Ha Minh, is to wander through the turbulence universe using deterministic computational tools based on large-eddy simulations (LES) in physical and spectral space. We first briefly recall the subgrid models used, then apply them to mixing layers, jets, separated flows (the backstep in particular, on which Hieu worked a lot) and boundary layers. The influence of compressibility will be also considered. These fine-grain LES allow us to decipher very nicely the intimate vortical structure of turbulence, and predict their statistics. Finally, we discuss of the applicability of these methods to industrial flows. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
The paper argues that to achieve the desired width of applicability for use in general CFD software, turbulence modelling at second-moment level needs to be based upon making the pressure-strain term and other major processes comply with the two-component limit (TCL), a strategy first advocated by Lumley [24]. The approach is especially powerful for flows close to surfaces that are far from flat and in applications to horizontal, stably-stratified flows where, due to the action of buoyancy, the stress tensor also approaches a two-component form. A range of recent applications of TCL modelling is presented including flow in curved ducts, three-dimensional wall jets, free-surface jets and stably-stratified mixing regions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Reynolds-averaged Navier–Stokes prediction of shock wave/turbulent boundary layer interactions can yield significant error in terms of the size of the separation bubble. In many applications, this can alter the shock structure and the resulting surface properties. Shock-unsteadiness modification of Sinha et al. (Physics of Fluids, Vol.15, No.8, 2003) has shown potential in improving separation bubble prediction in compression corner flows. In this article, the modification is applied to oblique shock wave interacting with a turbulent boundary layer. The challenges involved in the implementation of the shock-unsteadiness correction in the presence of multiple shock waves and expansion fans are addressed in detail. The results show that a robust implementation of the model yields appreciable improvement over standard kω turbulence model predictions.  相似文献   

11.
Abstract

A comparative study of low-Re wall-distance-free (WDF) turbulence models in incompressible flows is presented. The study includes the WDF k-? and the three-equation WDF k-?-γ as well as two k-? models which invoke the distance from the wall. The models are implemented in conjunction with a characteristics-based method and an implicit unfactored scheme. Comparison with direct-numerical-simulation data reveals that the WDF models provide much more accurate results for the dissipation rate, especially in the near wall region. A grid refinement study further reveals that the models which explicitly involve the distance from the wall cannot capture the correct turbulence dissipation rate behaviour in the near-wall region even on the finest grid, where grid-independent solution is achieved. However, the low-Re WDF models require slightly more iterations than the other k - ? models to converge. Results are presented for channel, flat plate and backward-facing step flows.  相似文献   

12.
Capability of the explicit algebraic stress models to predict homogeneous and inhomogeneous shear flows are examined. The importance of the explicit solution of the production to dissipation ratio is first highlighted by examining the algebraic stress models performance at purely irrotational strain conditions. Turbulent recirculating flows within sudden expanding pipes are further simulated with explicit algebraic stress model and anisotropic eddy viscosity model. Both models predict better stress–strain interactions, showing reasonable shear layer developments. The anisotropic stress field are also accurately predicted by the models, though the anisotropic eddy viscosity model of Craft et al. returns marginally better results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
14.
This paper presents initial results from a collaborative assessment of turbulence model predictions for transition under the influence of free-stream turbulence. Results are presented from a number of test cases and some recommendations are made as to the best present models for use in engineering design codes.  相似文献   

15.
A low‐Reynolds number kε turbulence model is proposed that incorporates diffusion terms and modified Cε(1,2) coefficients to amplify the level of dissipation in non‐equilibrium flow regions, thus reducing the kinetic energy and length scale magnitudes to improve prediction of adverse pressure gradient flows, involving flow separation and reattachment. Unlike the conventional kε model, it requires no wall function/distance parameter that bridges the near‐wall integration. The model is validated against a few flow cases, yielding predictions in good agreement with the direct numerical simulation (DNS) and experimental data. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
On the eddy viscosity model of periodic turbulent shear flows   总被引:4,自引:0,他引:4  
Physical argument shows that eddy viscosity is essentially different from molecular viscosity. By direct numerical simulation, it was shown that for periodic turbulent flows, there is phase difference between Reynolds stress and rate of strain. This finding posed great challenge to turbulence modeling, because most turbulence modeling, which use the idea of eddy viscosity, do not take this effect into account. The project supported by the National Natural Science Foundation of China (19732005) and Liu Hui Center for Applied Mathematics of Nankai & Tianjin University  相似文献   

17.
A new approach to sensitize turbulence closures based on the linear eddy-viscosity hypothesis to rotational effects is proposed. The principal idea is to ‘mimic' the behavior of a second moment closure (SMC) in rotating homogeneous shear flow; depending on the ratio of the mean flow to the imposed rotational time scales, the model should be able to bifurcate between two stable equilibrium solutions. These solutions correspond to exponential or algebraic time dependent growth or decay of turbulent kinetic energy. This fundamental behavior of SMCs is believed to be of importance also in the prediction of non-equilibrium turbulence. A near-wall turbulence model which is based on the linear eddy-viscosity hypothesis is modified in the present study. Wall proximity effects are modeled by the elliptic relaxation approach. This closure has been successfully applied in the computation of complex, non-equilibrium flows in inertial frames of reference. The objective of the present study is to extend the predictive capability of the model to include flows dominated by rotational effects. The new model is calibrated in rotating homogeneous turbulent shear flow and subsequently tested in three different cases characterized by profound effects of system rotation or streamline curvature. It is able to capture many of the effects due to imposed body forces that the original closure is incapable of. Good agreement is obtained between the present predictions and available experimental and DNS data.  相似文献   

18.
This work concerns the modelling of stratified two-phase turbulent flows with interfaces. We consider an equation for an intermittency function α(x,t) which denotes the probability of finding an interface at a given time t and a given point x. In Wacławczyk and Oberlack (2011) a model for the unclosed terms in this equation was proposed. Here, we investigate the performance of this model by a priori tests, and finally, based on the a priori data discuss its possible modification and improvements.  相似文献   

19.
工程湍流模式理论综述及展望   总被引:9,自引:0,他引:9  
倪浩清 《力学进展》1996,26(2):145-165
本文讨论了国内外湍流模拟的现状和发展趋势.指出湍流模式的建立除了应遵循理性力学原则外,还必须密切结合工程流体的复杂流动现象,如对具有浮力的回流、分离流及强旋流的模拟,对逆梯度的输运模拟,对单相流、多相流,单流体、多流体的湍流牛顿流体及湍流的非牛顿流体的模拟.应加深对湍流机理的认识,改进湍流模拟手段,结合工程实际,提出较为通用的工程湍流模式.   相似文献   

20.
颗粒湍流和颗粒碰撞的相互作用规律是两相流动中的核心问题。用颗粒湍流模型和颗粒碰撞的动力论模型叠加的方法在研究两相湍流流动方面取得了一定的成效,但是还有待改进。本文基于颗粒湍流形成大尺度脉动和颗粒间碰撞引起小尺度脉动的概念,从双流体模型出发,建立了两相流动的双尺度kp-pε两相湍流模型。利用该模型对下行床和突扩室内的气固...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号