首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In studies of solid supported lipid bilayers with atomic force microscopes (AFM) the force between tip and bilayer is routinely measured. During the approach of the AFM tip in aqueous electrolyte first a short-range repulsive force is observed. For many solid-like and some liquid-like lipid bilayers a subsequent break-through is observed. We observe such a break-through also for dioleoyloxypropyl-trimethylammonium chloride (DOTAP) which is expected to be liquid-like. Here we describe a model which assumes that the jump reflects the penetration of the AFM tip through the lipid bilayer. The model predicts a logarithmical dependence of the break-through force on the approaching velocity of the AFM tip. Two parameters are introduced: The ratio A/αV, α being a geometric factor, A being the area over which pressure is exerted on the bilayer, V the activation volume, and k0, the rate of spontaneous formation of a hole in the lipid bilayer that is big enough to allow the break-through of the tip. Experiments with bilayers consisting of DOTAP and dioleoylphosphatidylserine (DOPS) show that the break-through forces behave in the predicted way. For DOTAP we obtain ratios A/αV of about 58 nm−1 and rates k0 ranging from 1.9×10−8 to 2.5×10−4 s−1. For DOPS the corresponding values are 162 nm−1 and 2.0 s−1.  相似文献   

2.
In the past two decades, atomic force microscopy has been widely used for studying supported lipid bilayer related research, including the structure and dynamics of membranes and membrane proteins, and the interaction of membranes with chemical and biological molecules. The focus of this minireview is on the recent progress in the application of atomic force microscopy for supported lipid bilayers. Such progress mainly includes the application in the following aspects: submolecular-resolution imaging, in situ observation, and nanomechanics measurement.  相似文献   

3.
Investigating the structural and mechanical properties of lipid bilayer membrane systems is vital in elucidating their biological function. One route to directly correlate the morphology of phase-segregated membranes with their indentation and rupture mechanics is the collection of atomic force microscopy (AFM) force maps. These force maps, while containing rich mechanical information, require lengthy processing time due to the large number of force curves needed to attain a high spatial resolution. A force curve analysis toolset was created to perform data extraction, calculation and reporting specifically in studying lipid membrane morphology and mechanical stability. The procedure was automated to allow for high-throughput processing of force maps with greatly reduced processing time. The resulting program was successfully used in systematically analyzing a number of supported lipid membrane systems in the investigation of their structure and nanomechanics.  相似文献   

4.
Under ambient conditions, a water meniscus generally forms between a nanoscale atomic force microscope tip and a hydrophilic surface. Using a lattice gas model for water and thermodynamic integration methods, we calculate the capillary force due to the water meniscus for both hydrophobic and hydrophilic tips at various humidities. As humidity rises, the pull-off force rapidly reaches a plateau value for a hydrophobic tip but monotonically increases for a weakly hydrophilic tip. For a strongly hydrophilic tip, the force increases at low humidities (<30%) and then decreases. We show that mean-field density functional theory reproduces the simulated pull-off force very well.  相似文献   

5.
An approach to organic-inorganic interfacial structure at the atomic level is a great challenge in the studies of biomineralization. We demonstrate that atomic force microscopy (AFM) is powerful tool to discover the biomineral interface in detail. By using a model system of (100) hydroxyapatite (HAP) face and citrate, it reveals experimentally that only a side carboxylate and a surface calcium ion are involved in the binding effect during the citrate adsorption, which is against the previous understandings by using Langmuir adsorption and computer simulation. Furthermore, the adsorbed citrate molecules can use their free carboxylate and hydroxyl groups to be self-assembled on the HAP surface. AFM examination also finds that the presence of citrate molecules on the HAP crystal faces can enhance the adhesion force of the HAP surface. We suggest that the established AFM method can be used for a precise and direct understanding of biointerfaces at the atomic level.  相似文献   

6.
7.
In the last few years, an array of novel technologies, especially the big family of scanning probe microscopy, now often integrated with other powerful imaging tools such as laser confocal microscopy and total internal reflection fluorescence microscopy, have been widely applied in the investigation of biomolecular interactions and dynamics. But it is still a great challenge to directly monitor the dynamics of biomolecular interactions with high spatial and temporal resolution in living cells. An innovative method termed “single-photon atomic force microscopy” (SP-AFM), superior to existing techniques in tracing biomolecular interactions and dynamics in vivo, was proposed on the basis of the combination of atomic force microscopy with the technologies of carbon nanotubes and single-photon detection. As a unique tool, SP-AFM, capable of simultaneous topography imaging and molecular identification at the subnanometer level by synchronous acquisitions and analyses of the surface topography and fluorescent optical signals while scanning the sample, could play a very important role in exploring biomolecular interactions and dynamics in living cells or in a complicated biomolecular background.  相似文献   

8.
In situ simultaneous total internal reflectance fluorescence and in situ scanning probe microscopy performed on a phase-segregated supported planar lipid bilayer enabled direct in situ real-time correlated topographical and fluorescence images of nanometer-sized gel and fluid-phase lipid domains, presaging future in situ studies of membrane protein assemblies by single molecule imaging.  相似文献   

9.
In this work, using atomic force microscopy (AFM), we have studied the influence of the temperature on the properties of the surface planar bilayers (SPBs) formed with: (i) the total lipid extract of Escherichia coli; (ii) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPC) (1:1, mol/mol); and, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanol-amine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) (3:1, mol/mol). According to the height profile analysis we performed, the height of the SPBs of DMPC:POPC were temperature dependent. Separated domains were observed in the SPBs of the POPE:POPG mixture and the E. coli lipid extract. The implication of those domains for the correct insertion of membrane proteins into proteoliposomes is discussed.  相似文献   

10.
The swelling of a polymer surface has been monitored in real time on the nanometer scale by atomic force microscopy (AFM). After modification by oxygen plasma treatment, poly(p-phenylene terephthalamide) (PPTA) displays a characteristic nanostructured surface morphology consisting of high-lying features alternating with topographically depressed areas. Selective swelling of the least cross-linked, depressed areas after the adsorption of ambient water or water from saturated humid atmospheres was observed by tapping mode AFM operated in the attractive interaction regime. The swollen areas could be distinguished from the nonswollen ones by local variations in the sample indentation made by the AFM tip when imaging in the tapping mode repulsive interaction regime. Monitoring the swelling of the plasma-treated polymer surface provided a means to reveal the nanometer-scale heterogeneity that this type of treatment creates on the polymer surface, which is something that would not be possible otherwise. Measurement of AFM tip-sample adhesion forces evidenced rapid water adsorption onto the oxygen plasma-treated surface, supporting the idea of water-induced swelling. This high hydrophilicity was interpreted as arising from the incorporation of polar oxygen functionalities, as demonstrated by X-ray photoelectron spectroscopy (XPS).  相似文献   

11.
In order to avoid denaturation of biomolecules due to strong adsorption on solid surfaces, a soft substrate has to be used for atomic force microscopy (AFM) observation. We propose a hydrophilic agarose gel surface as a soft substrate for AFM to observe liposomes and lipid membranes. Although our simple method does not require any delicate control at the molecular level, an agarose gel surface can be simply flattened to 0.3 nm in roughness using an atomically flat solid surface during gelation. The AFM images revealed that liposomes were unruptured on the gel surface at low liposome density, whereas an unruptured state was difficult to obtain on a solid surface like mica. This indicates that the weak interaction between the liposome and the soft surface inhibits the liposome from rupturing, and also that the surface rougher than the solid surface prevents lateral diffusion of the liposomes along the surface to be fused. Increasing the liposome density resulted in a lipid membrane at various thicknesses forming on the hydrogel surface by the fusion and rupture of liposomes. Using the soft substrate, it can be expected to promote investigations of structures and functions of biomolecules at the nanometer scale under physiological conditions with AFM.  相似文献   

12.
The adsorption of phosphatidylcholine (PC) vesicles (30, 50, and 100 nm nominal diameters) and of dye-labeled PC vesicles (labeled with 6% Texas Red fluorophore (TR) and encapsulated carboxy fluorescein (CF)) to glass surfaces was studied by contact mode atomic force microscopy in aqueous buffer. These studies were performed in part to unravel details of the previously observed isolated rupture of dye-labeled PC vesicles on glass (Johnson, J. M.; Ha, T.; Chu, S.; Boxer, S. G. Biophys. J. 2002, 83, 3371-3379), specifically to differentiate partial rupture, that is, pore formation and leakage of entrapped dye, from full rupture to form bilayer disks. In addition, the adhesion potential of PC vesicles on glass was calculated based upon the adhesion-driven flattening of adsorbed vesicles and a newly developed theoretical model. The vesicles were found to flatten considerably upon adsorption to glass (width-to-height ratio of approximately 5), which leads to an estimate for the adhesion potential and for the critical rupture radius of 1.5 x 10(-4) J/m2 and 250 nm, respectively. Independent of vesicle size and loading with dye molecules, the adsorption of intact vesicles was observed at all concentrations below a threshold concentration, above which the formation of smooth lipid bilayers occurred. In conjunction with previous work (Johnson, J. M.; Ha, T.; Chu, S.; Boxer, S. G. Biophys. J. 2002, 83, 3371-3379), these data show that 6% TR 20 mM CF vesicles adsorb to the surface intact but undergo partial rupture in which they exchange content with the external buffer.  相似文献   

13.
In situ pulsed force mode scanning force microscopy (PFM-SFM) images of phase separated solid-supported lipid bilayers are discussed with the help of computer simulations. Simultaneous imaging of material properties and topography in a liquid environment by means of PFM-SFM is severely hampered by hydrodynamic damping of the cantilever. Stiffness and adhesion images of solid-supported membranes consisting of cholesterol, sphingomyelin, and 1,2-dioleyl-phosphatidylcholine obtained in aqueous solution exhibit contrast inversion of adhesion and stiff. ness images depending on parameters such as driving frequency, amplitude, and trigger setting. Simulations using a simple harmonic oscillator model explain experimental findings and give a deeper insight into the way PFM-SFM experiments have to be performed in order to obtain interpretable results and hence pave the way for reliable material contrast imaging at high speed.  相似文献   

14.
Surface forces between LB films of metal-chelating lipids in water have been studied using colloidal probe atomic force microscopy. The LB films of an amphiphile functionalized by the iminodiacetic acid group were prepared on hydrophobic glass substrates. The electric double layer repulsion operated between these LB film surfaces changed depending on pH reflecting the different protonation states of the iminodiacetic acid groups. The titration curve of the iminodiacetic acid monolayer was obtained from the force profiles. The Cu2+ complexation process was also monitored by measuring the force profiles at various Cu2+ ion concentrations.  相似文献   

15.
16.
We study the capillary force in atomic force microscopy by using Monte Carlo simulations. Adopting a lattice gas model for water, we simulated water menisci that form between a rough silicon-nitride tip and a mica surface. Unlike its macroscopic counterpart, the water meniscus at the nanoscale gives rise to a capillary force that responds sensitively to the tip roughness. With only a slight change in tip shape, the pull-off force significantly changes its qualitative variation with humidity.  相似文献   

17.
We use infrared near-field microscopy to chemically map the morphology of biological matrices. The investigated sample is built up from surface-tethered membrane proteins (cytochrome c oxidase) reconstituted in a lipid bilayer. We have carried out infrared near-field measurements in the frequency range between 1600 and 1800 cm(-1). By simultaneously recording the topography and chemical fingerprint of the protein-tethered lipid bilayer with a lateral resolution of 80 nm × 80 nm, we were able to probe locally the chemical signature of this membrane and to provide a local map of its surface morphology.  相似文献   

18.
Detergents are very useful for the purification of membrane proteins. A good detergent for protein extraction has to prevent denaturation by unfolding, and to avoid aggregation. Therefore, gaining access to the mechanism of biomembranes’ solubilization by detergents is crucial in biochemical research. Among the wide range of detergents used to purify membrane proteins, n-octyl β-d-glucopyranoside (OG) is one of the most important as it can be easily removed from final protein extracts.

Here, we used real-time atomic force microscopy (AFM) imaging to visualize the behavior of a model supported lipid bilayer in the presence of OG. Two kinds of supported model membranes were prepared by fusion of unilamellar vesicles: with an equimolar mixing of dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DOPC/DPPC) or with DPPC alone. Time-lapse AFM experiments evidenced that below its critical micelle concentration (CMC), OG was not able to solubilize the bilayer but the gel DPPC domains were instantly dissolved into the DOPC matrix. This result was interpreted as a disorganization of the DPPC molecular packing induced by OG. When membranes were incubated with OG at concentrations higher than CMC, the detergent immediately provoked the complete and immediate desorption of the whole bilayer for both compositions: DPPC and DOPC/DPPC. After a while, some patches appeared onto the bare mica surface. This redeposition activity, together with fusion events, progressively led to the recovery of a continuous bilayer. These results provide a new insight on the unique properties of OG employed in membrane reconstitution protocols.  相似文献   


19.
The atomic force microscope has been extensively used not only to image nanometer-sized biological samples but also to measure their mechanical properties by using the force curve mode of the instrument. When the analysis based on the Hertz model of indentation is applied to the approach part of the force curve, one obtains information on the stiffness of the sample in terms of Young's modulus. Mapping of local stiffness over a single living cell is possible by this method. The retraction part of the force curve provides information on the adhesive interaction between the sample and the AFM tip. It is possible to functionalize the AFM tip with specific ligands so that one can target the adhesive interaction to specific pairs of ligands and receptors. The presence of specific receptors on the living cell surface has been mapped by this method. The force to break the co-operative 3D structure of globular proteins or to separate a double stranded DNA into single strands has been measured. Extension of the method for harvesting functional molecules from the cytosol or the cell surface for biochemical analysis has been reported. There is a need for the development of biochemical nano-analysis based on AFM technology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号