首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed and validated for the determination of donepezil in human plasma samples. Diphenhydramine was used as the internal standard. The collision-induced transition m/z 380 --> 91 was used to analyze donepezil in selected reaction monitoring mode. The signal intensity of the m/z 380 --> 91 transition was found to relate linearly with donepezil concentrations in plasma from 0.1-20.0 ng/mL. The lower limit of quantification of the LC/MS/MS method was 0.1 ng/mL. The intra- and inter-day precisions were below 10.2% and the accuracy was between -2.3% and +2.8%. The validated LC/MS/MS method was applied to a pharmacokinetic study in which healthy Chinese volunteers each received a single oral dose of 5 mg donepezil hydrochloride. The non-compartmental pharmacokinetic model was used to fit the donepezil plasma concentration-time curve. Maximum plasma concentration was 12.3 +/- 2.73 ng/mL which occurred at 3.50 +/- 1.61 h post-dosing. The apparent elimination half-life and the area under the curve were, respectively, 60.86 +/- 12.05 h and 609.3 +/- 122.2 ng . h/mL. LC/MS/MS is a rapid, sensitive and specific method for determining donepezil in human plasma samples.  相似文献   

2.
A rapid and high sensitive liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was developed and validated for the quantification of zolpidem in human EDTA plasma using ondansetron (IS) as an internal standard. The analyte and IS were extracted from human plasma using ethyl acetate and separated on a C18 column (Inertsil-ODS, 5 μm, 4.6 × 50 mm) interfaced with a triple quadrupole tandem mass spectrometer. The mobile phase, which consisted of a mixture of methanol and 20 mM ammonium formate (pH 5.00 ± 0.05; 75:25 v/v), was injected at a flow rate of 0.40 mL/min. The retention times of zolpidem and IS were approximately 1.76 and 1.22. The LC run time was 3 min. The electrospray ionization source was operated in positive ion mode. Multiple reaction monitoring used the [M + H](+) ions m/z 308.13 → 235.21 for zolpidem and m/z 294.02 → 170.09 for the ondansetron, respectively. Five freeze-thaw cycles was established at -20 and -70°C.The linearity of the response/concentration curve was established in human EDTA plasma over the concentration range 0.10-149.83 ng/mL. The lower detection limit [(signal-to-noise (S/N) > 3] was 0.04 ng/mL and the lower limit of quantification (S/N > 10) was 0.10 ng/mL. This LC-MS-MS method was validated with intra-batch and inter-batch precision of 0.52-8.66.The intra-batch and inter-batch accuracy was 96.66-106.11. Recovery of zolpidem in human plasma was 87.00% and IS recovery was 81.60%. The primary pharmacokinetic parameters were T(max) (h) = (1.25 ± 0.725), C(max) (ng/mL) (127.80 ± 34.081), AUC(0→t), = (665.37 ± 320.982) and AUC(0→∞), 686.03 ± 342.952, respectively.  相似文献   

3.
A sensitive high-performance liquid chromatography-positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of sitagliptin, a DPP-4 inhibitor, in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M + H](+) ions, m/z 408-235 for sitagliptin and m/z 310-148 for the internal standard. The assay exhibited a linear dynamic range of 0.1-250 ng/mL for sitagliptin in human plasma. The lower limit of quantification was 0.1 ng/mL with a relative standard deviation of less than 6%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 300 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic studies.  相似文献   

4.
A simple, sensitive and rapid high-performance liquid chromatography/positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of perindopril in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reversed-phase column and analyzed by mass spectrometry in the multiple reaction monitoring mode using the respective [M+H](+) ions, m/z 369/172 for perindopril and m/z 417/234 for the internal standard. The method exhibited a linear dynamic range of 0.1-100 ng/mL for perindopril in human plasma. The lower limit of quantification was 0.1 ng/mL with a relative standard deviation of less than 6.1%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample made it possible to analyze more than 450 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability and bioequivalence studies.  相似文献   

5.
A sensitive, rapid and specific method for the simultaneous quantification of oxysophocarpine (OSC) and its active metabolite sophocarpine (SC) in rat plasma was developed and validated, using a liquid-liquid extraction procedure followed by liquid chromatography/electrospray ionization mass spectrometric (LC/ESI-MS) analysis. The separation was performed on a Zorbax Extend-C(18) column (2.1 mm i.d. x 50 mm, 5 microm) with a C(18) guard column using methanol-water containing 5 mm ammonium acetate (15:85, v/v) as mobile phase. Analysis was performed in selected ion monitoring (SIM) mode with an electrospray ionization (ESI) interface. [M + H](+) at m/z 263 for OSC, [M + H](+) at m/z 247 for SC and [M + H](+) at m/z 249 for matrine (internal standard) were selected as detecting ions, respectively. The method was linear in the concentration ranges 10-1000 ng/mL for OSC and 5-500 ng/mL for SC. The intra- and inter-day precisions (coefficient of variation) were within 7% for both analytes. Their accuracy (relative error) ranged from -6.4 to 1.5%. The limits of detection for OSC and SC were 3 and 1.5 ng/mL, respectively. The limits of quantitation for OSC and SC were 10 and 5 ng/mL, respectively. Recoveries of both analytes were greater than 85% at the low, medium and high concentrations. Both analytes were stable during all sample storage, preparation and analytic procedures. The method was successfully applied to a pharmacokinetic study after an oral administration of OSC to rats with a dose of 15 mg/kg.  相似文献   

6.
A sensitive HPLC/ESIMS method was established for the determination of manidipine in human plasma and pharmacokinetics study. After basified plasma with ammonia, manidipine and the internal standard (IS) (felodipine) were extracted with n-hexane and separated on a Hypersil ODS2 column with a mobile phase of methanol-5 mm ammonium acetate solution containing 0.1% acetic acid (85:15, v/v). MS determination was performed by electrospray ionization in the selected ion monitoring mode. Manidipine was monitored at m/z 611.4 and IS at m/z 384. The assay had a calibration range from 0.2 to 20 ng/mL and a lower limit of quantification of 0.1 ng/mL. The method has been successfully applied to the pharmacokinetic study in healthy volunteers.  相似文献   

7.
A simple, sensitive and selective LC-MS-MS method has been developed for the quantification of huperzine A in human plasma. Huperzine A and pseudoephedrine hydrochloride (internal standard) were isolated from human plasma by extraction with ethyl acetate, chromatographed on a C(18) column with a mobile phase consisting of 0.2% formic acid-methanol (15:85, v/v) and detected using a tandem mass spectrometer with an electrospray ionization interface. The lower limit of quantification was 0.0508 ng/mL, and the assay exhibited a linear range of 0.0508-5.08 ng/mL (r = 0.9998). The method was successfully applied to investigate the bioequivalence between two kinds of tablets (test vs reference product) in 18 healthy male Chinese volunteers. After a single 0.2 mg dose for the test and reference product, the resulting means of major pharmacokinetic parameters such as AUC(0-24), AUC(0-infinity), C(max), T(max) and t(1/2) of huperzine A were 16.35 +/- 3.42 vs 16.38 +/- 3.61 ng h/mL, 17.53 +/- 3.80 vs 17.70 +/- 3.97 ng h/mL, 2.47 +/- 0.49 vs 2.51 +/- 0.51 ng/mL, 1.3 +/- 0.4 vs 1.2 +/- 0.3 h and 5.92 +/- 0.75 vs 6.18 +/- 0.66 h, respectively, indicating that these two kinds of tablets were bioequivalent.  相似文献   

8.
A rapid and sensitive quantitative assay method was developed for determining ribavirin pharmacokinetic in human plasma. The chromatographic separation was achieved within 4.5 min using a SinoChrom ODS-BP column (4.6 x 150 mm, 5 microm) with acetonitrile-water (1 mmol/L ammonium acetate buffer, 0.1% formic acid; 15:85, v/v) at a constant flow rate of 0.8 mL/min. The MRM pairs were m/z 245.2 --> m/z 113.1 for ribavirin and m/z 226.1 --> m/z 152.1 for acyclovir (internal standard), respectively, with dwell times of 200 ms for each transition. The results showed calibration curve for ribavirin was linear over a concentration range of 1-1000 ng/mL. The lower limit of quantification (LLOQ) was 1 ng/mL ribavirin. Twenty healthy volunteers received a 300 mg oral dose of ribavirin. Blood samples were then collected up to 120 h postdosing. All plasma data were comodeled for ribavirin by using noncompartmental modeling. The single dose of ribavirin was well tolerated and no serious adverse effects occurred. The mean time to maximum concentration was about 1.25 h. The mean maximum concentration of drug in plasma for oral ribavirin was 250 ng/mL. The mean elimination half-life was 43.6 h. The present study describes a simple, specific, sensitive HPLC-MS/MS method for measuring plasma drug concentration and analyzing human pharmacokinetics of ribavirin.  相似文献   

9.
A simple high-performance liquid chromatographic (HPLC) method was developed and validated for the quantification of mizoribine in human serum. After the addition of 70% perchloric acid and 3-methylxanthine (50 microg/mL, internal standard) to human serum, the samples were mixed and centrifuged at 12,000 rpm (1432 g) for 10 min. The supernatant was injected onto a C(18) column eluted with a mobile phase of 20 mm Na2HPO4 and methanol (93:7, v/v, pH 3) containing 0.04% octanesulfonic acid and detected utilizing an ultraviolet detector at 275 nm. The linear calibration curve was obtained in the concentration range of 0.1-4.0 microg/mL and the lower limit of quantification was 0.1 microg/mL. This method was validated with selectivity, linearity, precision and accuracy. In addition, the method was successfully applied to estimate the pharmacokinetic parameters of mizoribine in Korean subjects following an oral administration of 100 mg mizoribine (two Bredinine 50 mg tablets). The maximum serum concentration (C(max)) of 2.30 +/- 0.83 microg/mL was reached 2.27 +/- 0.66 h after an oral dose. The mean AUC(0-12 h) and the elimination half-life (t(1/2)) were 13.2 +/- 4.79 microg h/mL and 3.10 +/- 0.74 h, respectively.  相似文献   

10.
In this paper, a sensitive and rapid chromatographic procedure using a selective analytical detection method (electrospray ionization-mass spectrometry in selected-ion monitoring mode) in combination with a simple and efficient sample preparation step is first presented for the determination of zaleplon in human plasma. The separation of the analyte, internal standard, and possible endogenous compounds are accomplished on a phenomenex Luna 5-microm C8(2) column (250- x 4.6-mm i.d.) with methanol-water (75:25, v/v) as the mobile phase. In order to optimize the mass detection of zaleplon, several parameters such as ionization mode, fragmentor voltage, m/z ratios of ions monitored, type of organic modifier, and eluent additive in the mobile phase are discussed. An internal standard is selected to guarantee the quantitative accuracy. Each analysis takes less than 6 min. The calibration curve of zaleplon in the range of 0.1-60.0 ng/mL in plasma is linear with a correlation coefficient of > 0.9992, and the detection limit (s/n = 3) is 0.1 ng/mL. The within- and between-day variations (relative standard deviation) in the zaleplon plasma analysis are less than 2.4% (n = 15) and 4.7% (n = 15), respectively. The application of this method is demonstrated for the analysis of zeleplon plasma samples in a Phase-I human pharmacokinetic study.  相似文献   

11.
12.
A sensitive liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) method was established and validated for the determination of glycyrrhizin in dog plasma. After treatment with methanol to precipitate proteins, plasma samples were analyzed on a reversed-phase C18 (ODS) column with a mobile phase of methanol:1% formic acid solution (75:25, v/v). MS determination was performed using negative electrospray ionization (negative ESI) in the selected ion monitoring mode. Glycyrrhizin was monitored at the m/z 821 channel and internal standard (gliquidone) at the m/z 526 channel. The calibration curve was linear over the range from 0.05 μg mL(-1) to 10 μg mL(-1) with a correlation coefficient above 0.99. This method was successfully applied to the pharmacokinetic studies in beagle dogs. The absolute bioavailability of glycyrrhizin in beagle dogs was 3.24%.  相似文献   

13.
This paper describes a sensitive and selective liquid chromatography with tandem mass spectrometry (LC-MS/MS) method for determination of the novel survivin suppressant YM155, 1-(2-methoxyethyl)-2-methyl-4,9-dioxo-3-(pyrazin-2-ylmethyl)-4,9-dihydro-1H-naphtho[2,3-d]imidazolium, which is developed for the treatment of solid tumors. This method uses a liquid-liquid extraction from 0.25 mL of dog plasma. LC separation was carried out on a Genesis Silica column (50 mm x 3.0 mm i.d.) at a flow-rate of 0.5 mL/min. Compounds were eluted using a mobile phase of 5 mm ammonium acetate and 0.1% formic acid in water-0.1% formic acid in acetonitrile, 17:83 (v/v). MS/MS detection was carried out with an MDS-Sciex API3000 triple quadrupole mass spectrometer in positive electrospray ionization mode. The standard curve was linear from 0.05 to 50 ng/mL (r > or = 0.9968). The lower limit of quantitation was 0.05 ng/mL. Good intra- and inter-day assay precision (within 7.4% RSD) and accuracy (within +/-12.3%) were obtained. The extraction recovery was 66.2%. The method was successfully applied to preclinical pharmacokinetic studies in dogs.  相似文献   

14.
A sensitive liquid chromatography-mass spectrometric method was developed for the quantification of ipriflavone in human plasma. The method utilized liquid-liquid extraction of plasma with ethyl acetate. A gradient elution was performed on a Hedera ODS-2 column (150×2.1 mm i.d., 5 μm), using a mobile phase consisting of 0.1% formic acid solution and methanol at a flow rate of 0.5 mL/min. The single quadrupole mass spectrometer was operated in selected-ion monitoring mode via positive electrospray ionization interface detecting m/z 239.1 and 285.1 for ipriflavone and diazepam (the internal standard), respectively. To improve the selectivity and sensitivity, the fragment ion m/z 239.1, which was produced by in-source collision-induced dissociation, was chosen as the quantitative ion for ipriflavone. The method was fully validated and applied to a pharmacokinetic study of ipriflavone. After oral administration of a single 200 mg ipriflavone tablet, the C(max,) AUC(0-72 h) , t(1/2) and T(max) were 6.3±6.3 ng/mL, 80.0±69.1 μg h/L, 23.0±8.6 h and 3.4±2.1 h, respectively.  相似文献   

15.
A simple, sensitive and rapid high-performance liquid chromatography/positive ion electrospray tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of pseudoephedrine in human plasma using mosapride as internal standard. Following solid-phase extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple-reaction monitoring mode using the respective [M + H](+) ions, m/z 166/148 for pseuoephedrine and m/z 422/198 for the IS. The method exhibited a linear dynamic range of 2-1000 ng/mL pseudoephedrine in human plasma. The lower limit of quantification was 2 ng/mL with a relative standard deviation of less than 9% for pseudoephedrine. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The total chromatographic run time of 2 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

16.
A sensitive microElution solid-phase extraction (SPE) liquid chromatography/tandem mass spectrometry (LC/MS/MS) method has been developed and validated for the determination of M+4 stable isotope labeled cortisone and cortisol in human plasma. In this method, M+4 cortisone and M+4 cortisol were extracted from 0.3 mL of human plasma samples using a Waters Oasis HLB 96-well microElution SPE plate using 70 microL methanol as the elution solvent, and chromatographed on a Waters Symmetry C18 column (4.6 x 50 mm, 3.5 microm). M+9 cortisone and M+9 cortisol were used as the internal standards. A PE Sciex API 4000 tandem mass spectrometer interfaced with the liquid chromatograph via a turboionspray source was used for mass analysis and detection. The selected reaction monitoring (SRM) of precursor --> product ion transitions were monitored at m/z 365.2 [M+H](+) --> 167.0 and at m/z 367.3 [M+H](+) --> 125.1 for M+4 cortisone and M+4 cortisol, respectively. The lower limit of quantitation was 0.1 ng mL(-1) and the linear calibration range was from 0.1 to 100 ng mL(-1) for both analytes. This method demonstrated to be very reproducible and reliable.  相似文献   

17.
建立了超高效液相色谱-三重四极杆质谱高灵敏测定尿液和血浆中α-鹅膏毒肽、β-鹅膏毒肽和γ-鹅膏毒肽的方法。经过免疫亲和柱净化,尿液样品浓缩20倍、血浆样品浓缩10倍,以Kinetex Biphenyl色谱柱(100 mm×2.1 mm, 1.7 μm)作为分析柱,甲醇-0.005%(v/v)甲酸水溶液作为流动相进行梯度洗脱分离,电喷雾电离、负离子、多反应监测模式下检测,外标法定量。3种鹅膏毒肽的线性范围为0.1~200 ng/mL,相关系数(r)>0.999。尿液和血浆中3种鹅膏毒肽的基质效应和提取回收率分别为92%~108%和90%~103%,变异系数均小于13%。尿液中3种鹅膏毒肽的准确度为-9.4%~8.0%,重复性和中间精度分别为3.0%~14%和3.5%~18%,当取样量为2.00 mL时,方法的检出限均为0.002 ng/mL;血浆中3种鹅膏毒肽的准确度为-13%~8.0%,重复性和中间精度分别为3.9%~9.7%和5.5%~12%,当取样量为1.00 mL时,方法的检出限均为0.004 ng/mL。该法操作简单、灵敏、准确,已在中毒患者摄入野生蘑菇后138 h的尿液中检出0.0067 ng/mL α-鹅膏毒肽和0.0059 ng/mL β-鹅膏毒肽。该法已成功解决中毒患者尿液和血浆中超痕量鹅膏毒肽的检测难题,对于疑似中毒病人的早诊断、早治疗、降低死亡率都具有非常重要意义,也为今后开展此类毒素毒理作用及机体代谢规律的研究提供了可靠的技术支撑。  相似文献   

18.
A selective, sensitive and rapid liquid chromatography-tandem mass spectrometry method has been developed for the determination of caudatin-2,6-dideoxy-3-O-methy-beta-d-cymaropyranoside (CDMC) in rat plasma. This method involves a plasma clean-up step using liquid-liquid extraction, followed by LC separation and positive electrospray ionization mass spectrometry detection (LC/ESI-MS/MS). Chromatographic separation of the analytes was achieved using a C(18) column with a mobile phase of acetonitrile and water (70:30, v/v) at a flow rate of 1.0 mL/min. Low energy collision tandem mass spectrometric analysis (CID-MS/MS) using the multiple reaction monitoring (MRM) mode was used for analyte quantification. For the MRM analysis of CDMC, the following transition at m/z 658.4 --> 529.6 derived from the protonated molecule [M + Na](+). A calibration curve was linear in the 5-500 ng/mL range for CDMC, and the limit of detection was 5 ng/mL. The inter- and intra-day precisions (RSD) were 相似文献   

19.
A new method for the determination of anti-diabetic drugs metformin and rosiglitazone based on the use of capillary electrophoresis with electrospray mass spectrometry was developed. The proposed method allowed their separation within 11 min by using 50 mM formic acid at +20 kV. Positive electrospray ionization and selected ion monitoring [M+H](+) of metformin (m/z=130) and rosiglitazone (m/z=358) were performed. Several important experimental parameters influencing electrospray ionization of metformin and rosiglitazone were studied. The final composition of sheath liquid was water/methanol/formic acid (50:49.5:0.5, v/v/v), at a flow rate of 2 μL/min. The developed method was applied for the determination of metformin and rosiglitazone simultaneously in human serum after protein precipitation with acetonitrile. The limits of detection of developed method were 4.42 and 2.14 ng/mL for rosiglitazone and for metformin, respectively, which is sufficient for therapeutic serum concentration levels monitoring for both studied drugs.  相似文献   

20.
张秀尧  蔡欣欣  张晓艺 《色谱》2014,32(6):586-590
建立了超高效液相色谱-三重四极杆质谱联用方法,检测血浆和尿液中的α-龙葵碱、α-卡茄碱和茄啶。样品经2%(v/v,下同)甲酸水溶液等量稀释,再经混合型阳离子交换固相萃取柱(MCX SPE)净化,以0.1%甲酸乙腈溶液和含0.05%甲酸的5 mmol/L乙酸铵水溶液作为流动相进行梯度洗脱,在UPLC BEH C18色谱柱上实现分离,正离子电喷雾串联质谱多反应监测(ESI-MS/MS MRM)方式检测,基质匹配外标法定量。一次进样分析时间为5.5min。血浆和尿液中3种待测物的线性范围均为0.3~100 ng/mL,相关系数为0.997~0.999;样品的检出限为0.1 ng/mL,定量限为0.3 ng/mL;血浆和尿液中的平均加标回收率分别为82%~112%和96%~114%,相对标准偏差为4.0%~16%和2.7%~17%(n=6)。方法简单、准确、灵敏,适用于马铃薯中毒检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号