首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
These final results from DELPHI searches for the Standard Model (SM) Higgs boson, together with benchmark scans of the Minimal Supersymmetric Standard Model (MSSM) neutral Higgs bosons, used data taken at centre-of-mass energies between 200 and 209 GeV with a total integrated luminosity of 224 pb-1. The data from 192 to 202 GeV are reanalysed with improved b-tagging for MSSM final states decaying to four b-quarks. The 95% confidence level lower mass bound on the Standard Model Higgs boson is 114.1 GeV/c 2. Limits are also given on the lightest scalar and pseudo-scalar Higgs bosons of the MSSM.Received: 7 March 2003, Revised: 30 September 2003, Published online: 3 December 2003  相似文献   

2.
A search is described for the neutral Higgs bosons and predicted by models with two scalar field doublets and, in particular, the Minimal Supersymmetric Standard Model (MSSM). The search in the and production channels is based on data corresponding to an integrated luminosity of 25 pb from collisions at centre-of-mass energies between 130 and 172 GeV collected with the OPAL detector at LEP. The observation of a number of candidates consistent with Standard Model background expectations is used in combination with earlier results from data collected at the resonance to set limits on and in general models with two scalar field doublets and in the MSSM. For example, in the MSSM, for , minimal and maximal scalar top quark mixing and soft SUSY-breaking masses of 1 TeV, the 95% confidence level limits GeV and GeV are obtained. For the first time, the MSSM parameter space is explored in a detailed scan. Received: 20 February 1998 / Published online: 13 July 1998  相似文献   

3.
This paper presents the final interpretation of the results from DELPHI on the searches for Higgs bosons in the minimal supersymmetric extension of the Standard Model (MSSM). A few representative scenarios are considered, that include CP conservation and explicit CP violation in the Higgs sector. The experimental results encompass the searches for neutral Higgs bosons at LEP1 and LEP2 in final states as expected in the MSSM, as well as LEP2 searches for charged Higgs bosons and for neutral Higgs bosons decaying into hadrons independent of the quark flavour. The data reveal no significant excess with respect to background expectations. The results are translated into excluded regions of the parameter space in the various scenarios. In the CP-conserving case, these lead to limits on the masses of the lightest scalar and pseudoscalar Higgs bosons, h and A, and on tanβ. The dependence of these limits on the top quark mass is discussed. Allowing for CP violation reduces the experimental sensitivity to Higgs bosons. It is shown that this effect depends strongly on the values of the parameters responsible for CP violation in the Higgs sector.  相似文献   

4.
This report summarizes the final results from the OPAL collaboration on searches for neutral Higgs bosons predicted by the Minimal Supersymmetric Standard Model (MSSM). CP-conserving and, for the first time at LEP, CP-violating scenarios are studied. New scenarios are also included, which aim to set the stage for Higgs searches at future colliders. The results are based on the data collected with the OPAL detector at e + e- centre-of-mass energies up to 209 GeV. The data are consistent with the prediction of the Standard Model with no Higgs boson produced. Model-independent limits are derived for the cross-sections of a number of event topologies motivated by predictions of the MSSM. Limits on Higgs boson masses and other MSSM parameters are obtained for a number of representative MSSM benchmark scenarios. For example, in the CP-conserving scenario m h-max where the MSSM parameters are adjusted to predict the largest range of values for m h at each , and for a top quark mass of 174.3 GeV, the domain is excluded at the 95% confidence level and Higgs boson mass limits of m h > 84.5 GeV and m A > 85.0 GeV are obtained. For the CP-violating benchmark scenario CPX which, by construction, enhances the CP-violating effects in the Higgs sector, the domain is excluded but no universal limit can be set on the Higgs boson masses.Received: 6 April 2004, Revised: 8 June 2004, Published online: 12 August 2004  相似文献   

5.
The particle discovered in the Higgs-boson searches at the LHC with a mass of about \(125 \, \mathrm{GeV}\) can be identified with one of the neutral Higgs bosons of the Next-to-Minimal Supersymmetric Standard Model (NMSSM). We calculate predictions for the Higgs-boson masses in the NMSSM using the Feynman-diagrammatic approach. The predictions are based on the full NMSSM one-loop corrections supplemented with the dominant and sub-dominant two-loop corrections within the Minimal Supersymmetric Standard Model (MSSM). These include contributions at \(\mathcal {O}{(\alpha _t \alpha _s, \alpha _b \alpha _s, \alpha _t^2,\alpha _t\alpha _b)}\), as well as a resummation of leading and subleading logarithms from the top/scalar top sector. Taking these corrections into account in the prediction for the mass of the Higgs boson in the NMSSM that is identified with the observed signal is crucial in order to reach a precision at a similar level as in the MSSM. The quality of the approximation made at the two-loop level is analysed on the basis of the full one-loop result, with a particular focus on the prediction for the Standard Model-like Higgs boson that is associated with the observed signal. The obtained results will be used as a basis for the extension of the code FeynHiggs to the NMSSM.  相似文献   

6.
We present detailed results of a diagrammatic calculation of the leading two-loop QCD corrections to the masses of the neutral -even Higgs bosons in the Minimal Supersymmetric Standard Model (MSSM). The two-loop corrections are incorporated into the full diagrammatic one-loop result and supplemented with refinement terms that take into account leading electroweak two-loop and higher-order QCD contributions. The dependence of the results for the Higgs-boson masses on the various MSSM parameters is analyzed in detail, with a particular focus on the part of the parameter space accessible at LEP2 and the upgraded Tevatron. For the mass of the lightest Higgs boson, , a parameter scan has been performed, yielding an upper limit on which depends only on . The results for the Higgs-boson masses are compared with results obtained by renormalization group methods. Good agreement is found in the case of vanishing mixing in the scalar quark sector, while sizable deviations occur if squark mixing is taken into account. Received: 11 January 1999 / Published online: 28 May 1999  相似文献   

7.
We have analysed the data collected by OPAL at centre-of-mass energies between 189 and 209 GeV searching for Higgs boson candidates from the process followed by the decay of where is the CP-odd Higgs boson. The search is done in the region where the mass, , is below the production threshold for , and the CP-even Higgs boson mass is within the range 45-86 GeV/c 2 . In this kinematic range, the decay of may be dominant and previous Higgs boson searches have very small sensitivities. This search can be interpreted within any model that predicts the existence of at least one scalar and one pseudoscalar Higgs boson. No excess of events is observed above the expected Standard Model backgrounds. Model-independent limits on the cross-section for the process are derived assuming 100% decays of the into and 100% decays of the into each of the following final states: , , , , and . The results are also interpreted in the CP-conserving no-mixing MSSM scenario, where the region and is excluded. Received: 13 March 2002 / Published online: 26 February 2003  相似文献   

8.
This paper describes flavour independent searches for hadronically decaying neutral Higgs bosons in the data collected by the DELPHI experiment at LEP, at centre-of-mass energies between 189 and 209 GeV. The collected data-set corresponds to an integrated luminosity of around 610 pb-1. The and processes are considered, with direct Higgs boson decays into hadrons. No evidence for Higgs boson production is found, and cross-section limits are set as a function of the Higgs boson masses. No explicit assumptions are made on the underlying physics beyond the Standard Model, allowing interpretation of the data in a large class of models. Received: 11 January 2005, Revised: 24 June 2005, Published online: 20 September 2005  相似文献   

9.
Searches for H Z production with the Higgs boson decaying into an invisible final state were performed using the data collected by the DELPHI experiment at centre-of-mass energies between 188 GeV and 209 GeV. Both hadronic and leptonic final states of the Z boson were analysed. In addition to the search for a heavy Higgs boson, a dedicated search for a light Higgs boson down to 40 GeV/c2 was performed. No signal was found. Assuming the Standard Model HZ production cross-section, the mass limit for invisibly decaying Higgs bosons is 112.1 GeV/c2 at 95% confidence level. An interpretation in the Minimal Supersymmetric extension of the Standard Model (MSSM) and in a Majoron model is also given.Received: 2 September 2003, Revised: 10 November 2003, Published online: 15 January 2004  相似文献   

10.
The recent LHC indications of a SM-like Higgs boson near 125 GeV are consistent not only with the Standard Model (SM) but also with Supersymmetry (SUSY). However naturalness arguments disfavour the Minimal Supersymmetric Standard Model (MSSM). We consider the Next-to-Minimal Supersymmetric Standard Model (NMSSM) with a SM-like Higgs boson near 125 GeV involving relatively light stops and gluinos below 1 TeV in order to satisfy naturalness requirements. We are careful to ensure that the chosen values of couplings do not become non-perturbative below the grand unification (GUT) scale, although we also examine how these limits may be extended by the addition of extra matter to the NMSSM at the two-loop level. We then propose four sets of benchmark points corresponding to the SM-like Higgs boson being the lightest or the second lightest Higgs state in the NMSSM or the NMSSM-with-extra-matter. With the aid of these benchmark points we discuss how the NMSSM Higgs boson near 125 GeV may be distinguished from the SM Higgs boson in future LHC searches.  相似文献   

11.
A generalization of the Next-to-Minimal Supersymmetric Model (NMSSM) is studied in which an explicit μ-term as well as a small supersymmetric mass term for the singlet superfield are incorporated. We study the possibility of raising the Standard Model-like Higgs mass at tree level through its mixing with a light, mostly-singlet, CP-even scalar. We are able to generate Higgs boson masses up to 145 GeV with top squarks below 1.1 TeV and without the need to fine tune parameters in the scalar potential. This model yields light singlet-like scalars and pseudoscalars passing all collider constraints.  相似文献   

12.
The Minimal Supersymmetric Standard Model (MSSM) distinguishes itself from other GUT's by a successful prediction of many unrelated phenomena with a minimum number of parameters. Among them: a) Unification of the gauge couplings constants; b) Unification of the b-quark and τ-lepton masses; c) Proton stability; d) Electroweak symmetry breaking at a scale far below the unification scale and the corresponding relation between the gauge boson masses and the top quark mass. A combined fit of the free parameters in the MSSM to these low energy constraints shows that the MSSM model can satisfy these constraints simultaneously. From the fitted parameters the masses of the as yet unobserved superpartners of the SM particles are predicted, the top mass is constrained to a range between 140 and 200 GeV, and the second order QCD coupling constant is required to be between 0.108 and 0.132. The complete second order renormalization group equations for the gauge and Yukawa couplings are used and analytical solutions for the neutral gauge boson, the Higgs masses and the sparticle masses are derived, taking into account the one-loop corrections to the Higgs potential.  相似文献   

13.
We review possible properties of Higgs bosons in the NMSSM, which allow to discriminate this model from the MSSM: masses of mostly Standard-Model-like Higgs bosons at or above 140 GeV, or enhanced branching fractions into two photons, or Higgs-to-Higgs decays. In the case of a Standard-Model-like Higgs boson above 140 GeV, it is necessarily accompanied by a lighter state with a large gauge singlet component. Examples for such scenarios are presented. Available studies on Higgs-to-Higgs decays are discussed according to the various Higgs production modes, light Higgs masses and decay channels.  相似文献   

14.
A search for neutral Higgs bosons has been performed using the full sample of Z0 decays collected by the OPAL detector at LEP up to 1995. The data were taken at centre-of-mass energies between 88 GeV and 95 GeV and correspond to an integrated luminosity of approximately 160 pb?1. The present search addresses the processes Z0→H0Z* and h0Z*, where H0 is the Higgs boson predicted by the Standard Model and h0 the lightest neutral scalar Higgs boson predicted in the framework of the Minimal Supersymmetric Standard Model. For the virtual Z0 boson, Z*, the following decay channels are considered: Z*→vv?, e+e? and μ+μ?. Two candidate events have been found in the vv?H0 channel and one in the μ+μ?H0 channel. Combined with earlier searches, the present search excludes the SM Higgs boson, at the 95% confidence level (CL), from the mass range below 59.6 GeV. In the framework of the Minimal Supersymmetric Standard Model, allowing a wide range of variation for most relevant model parameters, a 95% CL lower limit of 44.3 GeV is obtained for the mass of the h0 boson. Combined with earlier direct searches for the Higgs boson pair production process Z0→h0A0 and with measurements of the Z0 line shape, a 95% CL lower limit of 23.5 GeV is obtained for the mass of the pseudoscalar Higgs boson A0, assuming tan β≥ 1.  相似文献   

15.
M.  Hashemi 《理论物理通讯》2014,61(1):69-74
In this paper, charged Higgs pair production through l^+l^- → H^+ H^-, where l = e or μ, is studied within the framework of a general Two Higgs Doublet Model (2HDM). The analysis is relevant to a future e^+e^- or μ^+ μ^- collider operating at center of mass energy of √s = 500 GeV. Two different scenarios of small and large a values are studied. Here a is the parameter, which diagonMizes the neutral CP-even Higgs boson mass matrix. Within the Minimal Supersymmetric Standard Model (MSSM), cross section of this process is almost the same at e+ e- and #+#- colliders. It is shown that at e^+e^- eolliders within a general 2HDM, cross section is not sensitive to the mass of neutral Higgs bosons, however, it can acquire large values up to several picobarn at μ^+μ^- colliders with the presence of heavy neutral Higgs bosons. A scan over Higgs boson mass parameter space is performed to analyze the effect of large masses of neutral Higgs bosons involved in the s-channel propagator and thus in the total cross section of this process.  相似文献   

16.
D. I. Kazakov 《Physics Reports》1999,320(1-6):187-198
The status of the Higgs boson mass in the Standard Model and its supersymmetric extensions is reviewed and the perspectives of Higgs searches are discussed. The parameter space of the Minimal Supersymmetric Standard Model (MSSM) is analysed with the emphasis on the lightest Higgs mass. The infrared behaviour of renormalization group equations for the parameters of MSSM is examined and infrared quasi-fixed points are used for the Higgs mass predictions. They strongly suggest the Higgs mass to be lighter than 100 or 130 GeV for low and high tan β scenarios, respectively. Extended models, however, allow one to increase these limits for low tan β up to 50%.  相似文献   

17.
We calculate the dominant one-loop radiative corrections arising from quark-squark loops to the mass squared matrix of theCP-even Higgs bosons in a non-minimal supersymmetric Standard Model containing two Higgs doublets and a Higgs singlet chiral superfield using one-loop effective potential approximation. We use this result to evaluate upper and lower bounds on the radiatively corrected masses of all the scalar Higgs bosons as a function of the parameters of the model. We find that the one-loop radiative corrections are substantial only for the lightest Higgs boson of the model and can push its mass beyond the reach of LEP. We also calculate an absolute upper bound on the mass of the radiatively corrected lightest Higgs boson and compare it with the corresponding bound in the minimal supersymmetric Standard Model.  相似文献   

18.
We study an upper bound on masses of additional scalar bosons from the electroweak precision data and theoretical constraints such as perturbative unitarity and vacuum stability in the two-Higgs-doublet model taking account of recent Higgs boson search results. If the mass of the Standard-Model-like Higgs boson is rather heavy and is outside the allowed region by the electroweak precision data, such a discrepancy should be compensated by contributions from the additional scalar bosons. We show the upper bound on masses of the additional scalar bosons to be about 2 (1) TeV for the mass of the Standard-Model-like Higgs boson to be 240 (500) GeV.  相似文献   

19.
《Physical review letters》2011,107(12):121801
We report results from a search for neutral Higgs bosons produced in association with b quarks using data recorded by the D0 experiment at the Fermilab Tevatron Collider and corresponding to an integrated luminosity of 7.3 fb(-1). This production mode can be enhanced in several extensions of the standard model (SM) such as in its minimal supersymmetric extension (MSSM) at high tanβ. We search for Higgs bosons decaying to tau pairs with one tau decaying to a muon and neutrinos and the other to hadrons. The data are found to be consistent with SM expectations, and we set upper limits on the cross section times branching ratio in the Higgs boson mass range from 90 to 320 GeV/c(2). We interpret our result in the MSSM parameter space, excluding tanβ values down to 25 for Higgs boson masses below 170 GeV/c(2).  相似文献   

20.
《Comptes Rendus Physique》2007,8(9):999-1012
We review the realization of the Brout–Englert–Higgs mechanism in the electroweak theory and describe the experimental and theoretical constraints on the mass of the single Higgs boson expected in the minimal Standard Model. We also discuss the couplings of this Higgs boson and its possible decay modes as functions of its unknown mass. We then review the structure of the Higgs sector in the minimal supersymmetric extension of the Standard Model (MSSM), noting the importance of loop corrections to the masses of its five physical Higgs bosons. Finally, we discuss some non-minimal models. To cite this article: J. Ellis et al., C. R. Physique 8 (2007).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号