首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G-quadruplex DNA show structural polymorphism, leading to challenges in the use of selective recognition probes for the accurate detection of G-quadruplexes in vivo. Herein, we present a tripodal cationic fluorescent probe, NBTE , which showed distinguishable fluorescence lifetime responses between G-quadruplexes and other DNA topologies, and fluorescence quantum yield (Φf) enhancement upon G-quadruplex binding. We determined two NBTE -G-quadruplex complex structures with high Φf values by NMR spectroscopy. The structures indicated NBTE interacted with G-quadruplexes using three arms through π–π stacking, differing from that with duplex DNA using two arms, which rationalized the higher Φf values and lifetime response of NBTE upon G-quadruplex binding. Based on photon counts of FLIM, we detected the percentage of G-quadruplex DNA in live cells with NBTE and found G-quadruplex DNA content in cancer cells is 4-fold that in normal cells, suggesting the potential applications of this probe in cancer cell detection.  相似文献   

2.
The dynamic interplay between two types of chiral structures; fully conjugated racemic hetero[7]helicenes and DNA strands prone to fold into G-quadruplex structures is described. Both the [7]helicenes and the G-quadruplex DNA structures exist in more than one conformation in solution. We show that the structures interact with and stabilise each other, mutually amplifying and stabilising certain conformations at increased temperatures. The [7]helicene ligands L1 and L2 stabilise the parallel conformation of k-ras significantly, whereas hybrid (K+) and antiparallel (Na+) h-telo G-quadruplexes are stabilised upon conformational switching into altered G-quadruplex conformations. Both L1 and L2 induce parallel G-quadruplexes from hybrid structures (K+) and L1 induces hybrid G-quadruplexes from antiparallel conformations (Na+). Enantioselective binding of one helicene enantiomer is observed for helicene ligand L2 , and VTCD melting experiments are used to estimate the racemisation barrier of the helicene.  相似文献   

3.
Selective interactions of cationic porphyrins with G-quadruplex structures   总被引:11,自引:0,他引:11  
G-quadruplex DNA presents a potential target for the design and development of novel anticancer drugs. Because G-quadruplex DNA exhibits structural polymorphism, different G-quadruplex typologies may be associated with different cellular processes. Therefore, to achieve therapeutic selectivity using G-quadruplexes as targets for drug design, it will be necessary to differentiate between different types of G-quadruplexes using G-quadruplex-interactive agents. In this study, we compare the interactions of three cationic porphyrins, TMPyP2, TMPyP3, and TMPyP4, with parallel and antiparallel types of G-quadruplexes using gel mobility shift experiments and a helicase assay. Gel mobility shift experiments indicate that TMPyP3 specifically promotes the formation of parallel G-quadruplex structures. A G-quadruplex helicase unwinding assay reveals that the three porphyrins vary dramatically in their abilities to prevent the unwinding of both the parallel tetrameric G-quadruplex and the antiparallel hairpin dimer G-quadruplex DNA by yeast Sgs1 helicase (Sgs1p). For the parallel G-quadruplex, TMPyP3 has the strongest inhibitory effect on Sgs1p, followed by TMPyP4, but the reverse is true for the antiparallel G-quadruplex. TMPyP2 does not appear to have any effect on the helicase-catalyzed unwinding of either type of G-quadruplex. Photocleavage experiments were carried out to investigate the binding modes of all three porphyrins with parallel G-quadruplexes. The results reveal that TMPyP3 and TMPyP4 appear to bind to parallel G-quadruplex structures through external stacking at the ends rather than through intercalation between the G-tetrads. Since intercalation between G-tetrads has been previously proposed as an alternative binding mode for TMPyP4 to G-quadruplexes, this mode of binding, versus that determined by a photocleavage assay described here (external stacking), was subjected to molecular dynamics calculations to identify the relative stabilities of the complexes and the factors that contribute to these differences. The DeltaG(o) for the external binding mode was found to be driven by DeltaH(o) with a small unfavorable TDeltaS(o) term. The DeltaG(o) for the intercalation binding model was driven by a large TDeltaS(o) term and complemented by a small DeltaH(o) term. One of the main stabilizing components of the external binding model is the energy of solvation, which favors the external model over the intercalation model by -67.94 kcal/mol. Finally, we propose that intercalative binding, although less favored than external binding, may occur, but because of the nature of the intercalative binding, it is invisible to the photocleavage assay. This study provides the first experimental insight into how selectivity might be achieved for different G-quadruplexes by using structural variants within a single group of G-quadruplex-interactive drugs.  相似文献   

4.
已有研究普遍认为铅离子(Pb2+)诱导富G适体链形成的G-四链体(Pb2+-G4)比钾离子(K+)诱导富G适体链形成的G-四链体(K+-G4)更为稳定,因而Pb2+可以置换K+-G4中的K+,而且K+的存在不影响Pb2+-G4的稳定性。有趣的是本研究发现K+ (20 μmol∙L−1–1 mmol∙L−1)不仅可以诱导10 µmol∙L−1 Pb2+稳定的T2TT(Pb2+-T2TT,杂合G4结构)发生构型转换,甚至还可取代Pb2+-T2TT中的Pb2+,形成K+稳定的T2TT (K+-T2TT,平行G4结构),最终转化形成的K+-G4结构与单独K+诱导富G适体链形成K+-G4的构型基本一致。随后,进一步考察了另外7条富G适体链,发现这一转化过程具有一定的普适性。该研究结果为理解G4构型转化以及内嵌离子交换提供了新的视角,也为拓展G4在生化分析和生物领域的应用提供了新的理论基础。  相似文献   

5.
A single pyridine unit incorporated into G-quadruplex DNA has revealed efficient energy transfer reactions in cation-containing G-quadruplexes. 8-(2-Pyridyl)-2'-deoxyguanosine, "2PyG", is a highly sensitive internal fluorescent probe of G-quadruplex folding and energy transfer. 2PyG was minimally disruptive to G-quadruplex folding and exhibited intense fluorescence, even when it was base-stacked with other guanine residues. Using 2PyG we have quantified energy transfer efficiencies within G-quadruplex structures prepared under conditions of excess Na(+)/K(+) (110 mM) or in 40% polyethylene glycol (PEG) under salt deficient conditions. G-quadruplex structures containing coordinated cations exhibited efficient DNA-to-probe energy transfer reactions (η(t) = 0.11-0.41), while PEG-folded G-quadruplexes exhibited very little energy transfer (η(t) = 0.02-0.07). Experiments conducted using unmodified G-quadruplexes suggest that cation coordination at the O(6) position of guanine residues results in enhanced quantum yields of G-quadruplex nucleobases that, in turn, serve as efficient energy donors to 2PyG. Given the growing interest in G-quadruplex-based devices and materials, these results will provide important design principles toward harnessing the potentially useful photophysical properties of G-quadruplex wires and other G-rich structures.  相似文献   

6.
易卓云  王欣雨  张妍  苏敏  赵博  隋广超  史金铭 《化学通报》2021,84(12):1284-1291
G-四链体是一类由Hoogsteen氢键维持稳定的,富含鸟嘌呤的DNA或RNA二级结构。人类基因组中存在大量潜在的形成G-四链体的序列,所形成的G-四链体结构能够调控基因组的稳定性、DNA复制和基因表达,其中包括很多与癌症相关基因。因此寻找能够诱导DNA的G富集区域形成G-四链体结构的配体,进而筛选潜在抗癌药物的先导化合物,已成为癌症治疗研究的热点之一。本文对近年来发现和设计的以G-四链体为靶点的小分子配体,按照靶向的G-四链体结构类型和配体的分子结构进行分类,综述了这类化合物在癌症治疗方面的研究进展,分析了相关靶向治疗存在的问题,并对未来的研究方向进行了展望。  相似文献   

7.
Sun H  Xiang J  Li Q  Liu Y  Li L  Shang Q  Xu G  Tang Y 《The Analyst》2012,137(4):862-867
Recognition of different human telomeric G-quadruplex structures has been a very important task for developing anti-cancer drug design. However, it also is a very challenging question since multiple conformational isomers of telomeric G-quadruplexes coexist under some conditions. Here, three different conformations including parallel, antiparallel, and mixed-type telomeric G-quadruplex structures have been well recognized by quinacrine (QNA) through monitoring its absorption, fluorescence, and fluorescence lifetime spectra. The multiple structures of H22 G-quadruplexes under physiological K(+) conditions could also be easily determined to coexist as mixed-type and antiparallel G-quadruplexes. The recognition mechanism based on the different binding affinity and binding sites has been further elucidated by association with the nuclear magnetic resonance (NMR) results.  相似文献   

8.
DNA G-四链体识别探针研究进展   总被引:1,自引:0,他引:1  
G-四链体是一种由富含鸟嘌呤核酸序列形成的独特的二级结构,广泛分布于真核生物基因组,如端粒DNA、r DNA和一系列基因中的启动子区域。G-四链体结构对很多重要的生理过程如基因的转录、复制、重组以及保持染色体的稳定性方面具有重要作用。G-四链体的特异、高灵敏检测将为进一步了解G-四链体结构在人类细胞基因组中的分布、功能和机制奠定基础,也可能为靶向G-四链体的肿瘤治疗方法提供新的思路。因而过去几十年人们一直致力于开发设计具有高选择性和高灵敏度的G-四链体识别探针,这些探针已经广泛应用于溶液中G-四链体的识别,而且具有良好的选择性。目前也有少数探针能够直接用于检测活体G-四链体结构。本文综述了一些常见的靶向G-四链体的小分子配体,以及它们在染色体和活体细胞G-四链体检测中的应用。笔者希冀本文能为设计识别G-四链体的高性能探针,进一步实现活细胞内G-四链体的检测提供借鉴。  相似文献   

9.
The widespread of G-quadruplex-forming sequences in genomic DNA and their role in regulating gene expression has made G-quadruplex structures attractive therapeutic targets against a variety of diseases, such as cancer. Information on the structure of G-quadruplexes is crucial for understanding their physiological roles and designing effective drugs against them. Resolving the structures of G-quadruplexes, however, remains a challenge especially for those in double-stranded DNA. In this work, we developed a photocleavage footprinting technique to determine the folding orientation of each individual G-tract in intramolecular G-quadruplex formed in both single- and double-stranded nucleic acids. Based on the differential photocleavage induced by a ligand tetrakis(2-trimethylaminoethylethanol) phthalocyaninato zinc tetraiodine (Zn-TTAPc) to the guanines between the two terminal G-quartets in a G-quadruplex, this method identifies the guanines hosted in each terminal G-quartets to reveal G-tract orientation. The method is extremely intuitive, straightforward, and requires little expertise. Besides, it also detects G-quadruplex formation in long single- and double-stranded nucleic acids.  相似文献   

10.
11.
Telomeric G-quadruplexes have recently emerged as drug targets in cancer research. Herein, we present the first NMR structure of a telomeric DNA G-quadruplex that adopts the biologically relevant hybrid-2 conformation in a ligand-bound state. We solved the complex with a metalorganic gold(III) ligand that stabilizes G-quadruplexes. Analysis of the free and bound structures reveals structural changes in the capping region of the G-quadruplex. The ligand is sandwiched between one terminal G-tetrad and a flanking nucleotide. This complex structure involves a major structural rearrangement compared to the free G-quadruplex structure as observed for other G-quadruplexes in different conformations, invalidating simple docking approaches to ligand–G-quadruplex structure determination.  相似文献   

12.
Guanine-rich DNA and RNA sequences can fold into unique structures known as G-quadruplexes. The structures of G-quadruplexes can be divided into several classes, depending on the parallel or antiparallel nature of the strands and the number of G-rich tracts present in an oligonucleotide. Oligonucleotides with single tracts of guanines form intermolecular parallel tetrameric G-quadruplexes. Oligonucleotides with two tracts of guanosines separated by two or more bases can form both intermolecular antiparallel fold-back dimeric and parallel tetrameric G-quadruplexes, and those with four tracts of guanosines can form both intramolecular parallel and antiparallel structures. Intramolecular G-qaudruplexes can fold into several folding topologies including antiparallel crossover basket, antiparallel chair, and parallel propeller. The ability to control the folding of G-quadruplexes would allow the physical, biochemical, and biological properties of these various folding topologies to be studied. Previously, the known methods to control the folding topology of G-quadruplexes included changing the buffer by varying the mono- and divalent cations that are present, and by changing the DNA sequence. Because the glycosidic bonds in the G-quartets of G-quadruplexes with parallel strands are in the anti conformation, we reasoned that incorporation of nucleoside analogues that prefer the anti conformation of the glycosidic bond into G-rich sequences would increase the preference for parallel G-quadruplex formation. As predicted, by positioning the conformationally constrained nucleotide analogue 2'-O-4'-C-methylene-linked ribonucleotide into specific positions of a DNA G-quadruplex we were able to shift the thermodynamically favored structure of a G-quadruplex from an antiparallel to a parallel structure.  相似文献   

13.
14.
The development of rapid and simple approaches for detection of G-quadruplex DNA structures has attracted significant attention to disclose their diverse physiological and pathological functions. Thiazole orange (TO) is a common fluorescence probe used for the detection of G-quadruplexes. However, it still suffers from some common problems like non-selective for G-quadruplex and emission in the lower wavelength region of spectrum, thus hampering its further applications. Probes with turn-on fluorescence in the far-red region are highly sought-after due to minimal auto-fluorescence and cellular damage. In this paper, we described a far-red fluorescent probe (L-1) by introducing an amine group into styrylquinolinium scaffold. The experimental results indicated that L-1 exhibited significant fluorescence enhancement when treated with G-quadruplexes but retained weak fluorescence in the presence of duplex DNAs. In addition, this probe also displayed higher binding affinity for parallel G-quadruplexes. The characteristics of L-1 were further investigated with UV–vis spectrophotometry, fluorescence, circular dichroism, KI quenching, FID assay and molecular docking to validate optical photophysical properties, as well as the selectivity, sensitivity and detailed binding mode toward G-quadruplex DNAs.  相似文献   

15.
Electrospray ionization mass spectrometry detected the formation of the G-quadruplex structure of the thrombin-binding aptamer, d(GGTTGGTGTGGTTGG), and established its specific interaction with metal ions. One piece of evidence that the bonding in the gas phase is via the G-quadruplex form is the enhanced binding, with respect to other metal ions, of the aptamer with Sr2+, Pb2+, Ba2+, and K+, which are of similar size. Another is the lack of specific binding with controls in which the G's are replaced with A's. The most convincing evidence is the extent of H/D exchange of the gas-phase aptamer as compared to that bound to K+ and Sr2+. The latter two complexes exchange six and nine fewer H's, indicating a significant increase in protection upon binding to the metals. Mass spectrometry will be an important tool in understanding G-quadruplexes, which are particularly important in DNA telomers.  相似文献   

16.
Guanine (G)-rich sequences can form a noncanonical four-stranded structure known as the G-quadruplex. G-quadruplex structures are interesting because of their potential biological properties and use in nanosciences. Here, we describe a method to prepare highly stable G-quadruplexes by linking four G-rich DNA strands to form a monomolecular G-quadruplex. In this method, one strand is synthesized first, and then a trebler molecule is added to simultaneously assemble the remaining three strands. This approach allows the introduction of specific modifications in only one of the strands. As a proof of concept, we prepared a quadruplex where one of the chains includes a change in polarity. A hybrid quadruplex is observed in ammonium acetate solutions, whereas in the presence of sodium or potassium, a parallel G-quadruplex structure is formed. In addition to the expected monomolecular quadruplexes, we observed the presence of dimeric G-quadruplex structures. We also applied the method to prepare G-quadruplexes containing a single 8-aminoguanine substitution and found that this single base stabilizes the G-quadruplex structure when located at an internal position.  相似文献   

17.
G-quadruplexes are higher-order DNA and RNA structures formed from guanine-rich sequences. These structures have recently emerged as a new class of potential molecular targets for anticancer drugs. An understanding of the three-dimensional interactions between small molecular ligands and their G-quadruplex targets in solution is crucial for rational drug design and the effective optimization of G-quadruplex ligands. Thus far, rational ligand design has been focused mainly on the G-quartet platform. It should be noted that small molecules can also bind to loop nucleotides, as observed in crystallography studies. Hence, it would be interesting to elucidate the mechanism underlying how ligands in distinct binding modes influence the flexibility of G-quadruplex. In the present study, based on a crystal structure analysis, the models of a tetra-substituted naphthalene diimide ligand bound to a telomeric G-quadruplex with different modes were built and simulated with a molecular dynamics simulation method. Based on a series of computational analyses, the structures, dynamics, and interactions of ligand-quadruplex complexes were studied. Our results suggest that the binding of the ligand to the loop is viable in aqueous solutions but dependent on the particular arrangement of the loop. The binding of the ligand to the loop enhances the flexibility of the G-quadruplex, while the binding of the ligand simultaneously to both the quartet and the loop diminishes its flexibility. These results add to our understanding of the effect of a ligand with different binding modes on G-quadruplex flexibility. Such an understanding will aid in the rational design of more selective and effective G-quadruplex binding ligands.  相似文献   

18.
G-rich nucleic acid oligomers can form G-quadruplexes built by G-tetrads stacked upon each other. Depending on the nucleotide sequence, G-quadruplexes fold mainly with two topologies: parallel, in which all G-tracts are oriented parallel to each other, or antiparallel, in which one or more G-tracts are oriented antiparallel to the other G-tracts. In the former topology, all glycosidic bond angles conform to anti conformations, while in the latter topology they adopt both syn and anti conformations. It is of interest to understand the molecular forces that govern G-quadruplex folding. Here, we approach this problem by examining the impact of LNA (locked nucleic acid) modifications on the folding topology of the dimeric model system of the human telomere sequence. In solution, this DNA G-quadruplex forms a mixture of G-quadruplexes with antiparallel and parallel topologies. Using CD and NMR spectroscopies, we show that LNA incorporations can modulate this equilibrium in a rational manner and we establish a relationship between incorporation of LNA nucleotides in syn and/or anti positions and the shift of the equilibrium to obtain exclusively the parallel G-quadruplex. The change in topology is driven by a combination of the C3'-endo puckering of LNA nucleotides and their preference for the anti glycosidic conformation. In addition, the parallel LNA-modified G-quadruplexes are thermally stabilised by about 11 °C relative to their DNA counterparts.  相似文献   

19.
YES G-rich oligonucleotide VK2 folds into an AGCGA-quadruplex tetrahelical structure distinct and significantly different from G-quadruplexes, even though it contains four G3 tracts. Herein, a bis-quinolinium ligand 360A with high affinity for G-quadruplex structures and selective telomerase inhibition is shown to strongly bind to VK2. Upon binding, 360A does not induce a conformational switch from VK2 to an expected G-quadruplex. In contrast, NMR structural study revealed formation of a well-defined VK2–360A complex with a 1:1 binding stoichiometry, in which 360A intercalates between GAGA- and GCGC-quartets in the central cavity of VK2. This is the first high-resolution structure of a G-quadruplex ligand intercalating into a G-rich tetrahelical fold. This unique mode of ligand binding into tetrahelical DNA architecture offers insights into the stabilization of an AGCGA-quadruplex by a heterocyclic ligand and provides guidelines for rational design of novel VK2 binding molecules with selectivity for different DNA secondary structures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号