首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In-process control (IPC) is an important task during chemical syntheses in pharmaceutical industry. Despite the fact that each chemical reaction is unique, the most common analytical technique used for IPC analysis is high performance liquid chromatography (HPLC). Today, the so-called “Quality by Design” (QbD) principle is often being applied rather than “Trial and Error” approach for HPLC method development. The QbD approach requires only for a very few experimental measurements to find the appropriate stationary phase and optimal chromatographic conditions such as the composition of mobile phase, gradient steepness or time (tG), temperature (T), and mobile phase pH. In this study, the applicability of a multifactorial liquid chromatographic optimization software was studied in an extended knowledge space. Using state-of-the-art ultra-high performance liquid chromatography (UHPLC), the analysis time can significantly be shortened. By using UHPLC, it is possible to analyse the composition of the reaction mixture within few minutes. In this work, a mixture of route of synthesis of apixaban was analysed on short narrow bore column (50 × 2.1 mm, packed with sub-2 µm particles) resulting in short analysis time. The aim of the study was to cover a relatively narrow range of method parameters (tG, T, pH) in order to find a robust working point (zone). The results of the virtual (modeled) robustness testing were systematically compared to experimental measurements and Design of Experiments (DoE) based predictions.  相似文献   

3.
A rapid and simple micellar liquid chromatographic method that does not require use of specific chromatographic columns has been developed and validated for azithromycin determination. The method uses a Hypersil C18 column at 60 °C, 1-butanol–pH 6.86 phosphate buffer solution–water, 15:25:60 (v/v), containing 0.10 M sodium dodecyl sulfate, as mobile phase, and UV-detection at 215 nm. Different characteristics of the method were validated satisfactorily. The specificity, accuracy, linearity, precision (repeatability), and robustness of the method were demonstrated. The method proved suitable for determination of the azithromycin content of capsules and uncoated tablets.Revised: 5 February and 11 March 2004  相似文献   

4.
A simple, isocratic, stability-indicating liquid chromatographic method for quantitative determination of curcumin was successfully developed. The chromatographic separations were achieved using a Hi-Q-Sil C18; 4.6 mm × 250 mm and 10 μm particle size column employing acetonitrile and acetate buffer (pH 3.0; 60: 40, v/v) as the mobile phase. The analyte was subjected to acidic, basic, oxidative, thermal and photo degradation. The method was validated with respect to linearity, precision, accuracy, limit of detection and limit of quantification. Curcumin was detected by UV-Vis detector at 425 nm whereas the degradation products were detected at 280 nm. The method was linear over the concentration range of 1–10 μg mL?1. The limit of detection was found to be 0.06 μg mL?1 and the quantification limit was 0.21 μg mL?1. Considerable degradation of the analyte was observed when it was subjected to alkaline conditions. Accuracy, evaluated as recovery, was in the range of 97–103%. Intra-day precision and intermediate precision showed relative standard deviations <1% and <2% respectively.  相似文献   

5.
JPC – Journal of Planar Chromatography – Modern TLC - A sensitive, selective, precise, and stability-indicating high-performance thin-layer chromatography (HPTLC) method for the...  相似文献   

6.
L-Dopa (LD), a substance used medically in the treatment of Parkinson’s disease, is found in several natural products, such as Vicia faba L., also known as broad beans. Due to its low chemical stability, LD analysis in plant matrices requires an appropriate optimization of the chosen analytical method to obtain reliable results. This work proposes an HPLC-UV method, validated according to EURACHEM guidelines as regards linearity, limits of detection and quantification, precision, accuracy, and matrix effect. The LD extraction was studied by evaluating its aqueous stability over 3 months. The best chromatographic conditions were found by systematically testing several C18 stationary phases and acidic mobile phases. In addition, the assessment of the best storage treatment of Vicia faba L. broad beans able to preserve a high LD content was performed. The best LD determination conditions include sun-drying storage, extraction in HCl 0.1 M, chromatographic separation with a Discovery C18 column, 250 × 4.6 mm, 5 µm particle size, and 99% formic acid 0.2% v/v and 1% methanol as the mobile phase. The optimized method proposed here overcomes the problems linked to LD stability and separation, thus contributing to the improvement of its analytical determination.  相似文献   

7.
Dincel  A.  Basci  N. E.  Atilla  H.  Bozkurt  A. 《Chromatographia》2007,66(1):51-56

A sensitive high performance liquid chromatographic method has been developed and validated for the determination of proparacaine in human aqueous humour. The procedure involved extraction of proparacaine from aqueous humour with cyclohexane. The separation was achieved using a Bondesil C8 (250 × 4.6 mm i.d., particle size 5 μm) analytical column with a mobile phase consisted of acetonitrile and sodium dihydrogen phosphate (pH 3.0, 20 mM) (30:70, v/v). Proparacaine and lidocaine (internal standard, IS) detection was performed by UV–Vis detector at 220 nm. The retention times for proparacaine and IS were 12.01 and 5.58 min, respectively. HPLC–UV–Vis method was linear in the range of 75–4,000 ng mL−1. The limit of detection (LOD) was 25 ng mL−1 and the limit of quantification (LOQ) of proparacaine was found to be 75 ng mL−1 (RSD ≤ 15%, = 6). In intra- and inter-day precision and accuracy analysis, the relative standard deviation was found to be in the range of 0.96 and 7.98%, the bias values were 0.64 and 3.33%. Recovery of proparacaine from human aqueous humour was 99.98% at 500 ng mL−1. Proparacaine solutions were stable at least 6 months at +4 and −20 °C. Proparacaine levels of aqueous humour in fifteen volunteers’ were in the range of 80.21 and 459.00 ng mL−1. According to system suitability tests and Shewhart’s quality control charts the proparacaine responses were in the acceptance ranges. Developed method was providing a sufficient quality at least over 3 months for determination of proparacaine in human aqueous humour.

  相似文献   

8.
An ultra high-performance liquid chromatographic method was developed to study the cinitapride metabolism. Metabolites were generated from the incubation of cinitapride with human liver microsomes. Cinitapride and its metabolites were separated by reversed-phase mode using a formate aqueous solution (pH 6.5) and acetonitrile as the components of the mobile phase. Chromatographic conditions, including the establishment of an elution gradient, were optimized for obtaining the maximum number of resolved components in the minimum analysis time. Experimental design and multicriteria decision-making strategies were utilized to facilitate the optimization of chromatographic conditions. Figures of merit were evaluated with cinitapride standards and incubated samples. Limits of detection are about 0.03 μmol/L, and repeatabilities are better than 0.06% for retention times and better than 3.5% for concentrations. The method was applied to characterize the in vitro cinitapride metabolism with human liver microsomes.  相似文献   

9.
A simple, sensitive high performance liquid chromatographic method with UV detection was developed and validated for determination of insulin in rat plasma, using methyl paraben as an internal standard. Insulin was extracted from plasma by a liquid–liquid extraction with a mixture of dichloromethane and n-hexane (1:1, v/v) followed by an acidic back extraction. Chromatographic separation was achieved isocratically with a Phenomenex® C18 analytical column (150 × 4.6 mm ID, 5 μm) at ambient room temperature. The calibration curves were linear within a concentration range of 0.7–8.4 μg mL?1 (r 2 = 0.9994). The inter-day and intra-day accuracy and precision were ≤3.33 and ≤5.55%. The limit of detection (LOD) and limit of quantification (LOQ) were 0.35 and 0.7 μg mL?1. The average recovery was 87.86% for insulin and 83.52% for methyl paraben. Insulin containing plasma samples were stable at ?20 °C for 7 days. Validated HPLC method was successfully applied to a pharmacokinetic study of insulin in streptozotocin induced diabetic rats.  相似文献   

10.
A simple and fast ultra-high-performance liquid chromatography (UHPLC) method was developed for the identification and quantification of the following flavonoids in red wine: (+/-)-catechin, (-)-epicatechin, rutin, quercitrin, hesperidin, neohesperidin, (+/-)-naringenin, hesperetin, and chrysin. Chromatographic separation of the flavonoids was performed on a Chromolith Fast Gradient C18e column. A gradient elution was used with mobile phases consisting of 0.1% formic acid in water and acetonitrile. UV detection was performed at 280 nm. A complete separation of flavonoids was possible within 6 min. The calibration curves showed good linearity (R2 > or = 0.9990) in the selected range of each analyte; the LOD ranged between 0.06 and 0.19 microg/mL. An optimized sample preparation method utilized SPE. The Oasis HLB column with the highest recoveries was selected for the preconcentration step. This method was successfully applied to the determination of these flavonoids in the red wine samples with excellent results.  相似文献   

11.
The aim of this study was to study the stress degradation of granisetron and analysis of the drug in the presence of its degradation products. Forced degradation studies were conducted on bulk sample using acidic, alkaline, oxidative, heat and photolytic conditions. Granisetron was relatively unstable under acidic, alkaline and oxidative conditions. Separation of granisetron and degradation products was achieved using a Nova‐Pak C8 column and acetonitrile‐KH2PO4 25 mM (75:25, v/v) as mobile phase with UV detection at 305 nm. The method was linear over the range of 0.2‐15 μg/mL granisetron (r2 > 0.999). The within‐day and between‐day precision values were also in the range of 0.5‐4%. The proposed method was successfully applied for quantitative determination of granisetron in tablets and in vitro dissolution studies.  相似文献   

12.
JPC – Journal of Planar Chromatography – Modern TLC - A thin-layer chromatography (TLC) method for the analysis of clotrimazole was developed and validated according to the...  相似文献   

13.
14.
《Analytical letters》2012,45(12):2329-2337
Abstract

A simple, reproducible, accurate, and effective spectrophotometric method was developed and validated for the quantitation of the antihistamine fexofenadine in capsules and coated tablets. Ethanol was used as solvent and the absorbance at the wavelength of 220 nm was employed to the quantitation of the drug. The method validation was fulfilled through the evaluation of the analytical parameters of linearity, precision, accuracy, limits of detection, and quantitation and specificity. The method was linear (r=0.9999) at concentrations ranging from 8.0 to 20.0 µg ml?1, precise (RSD intra‐day=0.29; 0.18; 0.39; RSD inter‐day=0.12 for capsules and RSD intra‐day=0.13; 0.16; 0.13; RSD inter‐day=0.13 for coated tablets), accurate (percentage recovery=99.97% for capsules and 100.51% for tablets), sensitive (limits of detection and quantitation of 0.10 and 0.29 µg ml?1, respectively) and specific. The method was compared to a high performance liquid chromatography (HPLC) method, which was previously developed to the same drug. The results showed no significant difference between the methods in fexofenadine hydrochloride quantitation.  相似文献   

15.
A method for quantitative measurement of the photochemical decomposition of the anti-inflammatory agent, indoprofen (INP) is descriped. An RPLC-based assay that could determine the extent of degradation of INP in a rapid, sensitive, and accurate manner was developed. The method was validated under photoirradiation. Quantitation was monitored with an Inertsil ODS-3V column using a mobile phase of acetonitril and 1% HOAc solution in deionized H2O. Statistics relevant to the system criteria, peak integrity and resolution among the parent drug and its degradation products were performed. From the intra- and inter-day tests, the coefficients of variation were found to range from 0.59% to 4.25% for the former and from 0.71% to 4.86% for the latter. The good selectivity and specificity of this RPLC-based procedure render it suitable for measurements of INP stability.  相似文献   

16.

A reversed-phase liquid chromatography (RP-LC) method was validated for the determination of rupatadine in pharmaceutical dosage forms. The LC method was carried out on a Gemini C18 column (150 mm × 4.6 mm I.D.), maintained at 30 °C. The mobile phase consisted of ammonium acetate buffer (pH 3.0; 0.01 M) with 0.05% of 1-heptanesulfonic acid–acetonitrile (71.5:28.5, v/v), run at a flow rate of 1.0 mL min−1 and using photodiode array (PDA) detection at 242 nm. The chromatographic separation was obtained with retention time of 5.15 min, and was linear in the range of 0.5–400 μg mL−1 (r = 0.9999). The specificity and stability-indicating capability of the method was proven through the degradation studies and showing also, that there was no interference of the excipients. The accuracy was 100.39% with bias lower than 0.58%. The limits of detection and quantitation were 0.01 and 0.5 μg mL−1, respectively. Moreover, method validation demonstrated acceptable results for precision, sensitivity and robustness. The proposed method was applied for the analysis of pharmaceutical dosage forms assuring the therapeutic efficacy.

  相似文献   

17.
JPC – Journal of Planar Chromatography – Modern TLC - This paper presents the development and validation of an improved method for the analysis of fluconazole using high-performance...  相似文献   

18.
A rapid and sensitive RP-HPLC method with UV detection for routine control of pramipexole in tablets was developed. Chromatography was performed with mobile phase containing a mixture of acetonitrile/phosphate buffer (60/40; v/v) with a flow rate of 0.8 mL min−1. Quantitation was accomplished with the internal standard method; the procedure was validated by linearity (correlation coefficient = 0.99892), accuracy, robustness and intermediate precision. Limit of quantitation and limit of detection were found to be 4.5 μg and 1.4 μg respectively, which indicates the method is highly sensitive. Experimental design was used during validation to calculate method robustness and intermediate precision, for robustness test three factors were considered; percentage v/v of acetonitrile, flow rate and pH; an increase in the flow rate results in a decrease of concentration found of the drug, while the percentage of organic modifier and temperature have no important effect on the response. For intermediate precision measure the considered variables were: analyst, equipment, days and obtained RSD value (0.56%, n=24) which indicated a good precision of the analytical method. The method was found to be applicable for determination of the drug in tablet formulations and the results of the developed method were compared with those of the UV spectrophotometric method to access the active pramipexole content. Revised: 13 March and 25 April 2006  相似文献   

19.
A reversed-phase liquid chromatography (RP-LC) method was validated for the determination of rupatadine in pharmaceutical dosage forms. The LC method was carried out on a Gemini C18 column (150 mm × 4.6 mm I.D.), maintained at 30 °C. The mobile phase consisted of ammonium acetate buffer (pH 3.0; 0.01 M) with 0.05% of 1-heptanesulfonic acid–acetonitrile (71.5:28.5, v/v), run at a flow rate of 1.0 mL min?1 and using photodiode array (PDA) detection at 242 nm. The chromatographic separation was obtained with retention time of 5.15 min, and was linear in the range of 0.5–400 μg mL?1 (r = 0.9999). The specificity and stability-indicating capability of the method was proven through the degradation studies and showing also, that there was no interference of the excipients. The accuracy was 100.39% with bias lower than 0.58%. The limits of detection and quantitation were 0.01 and 0.5 μg mL?1, respectively. Moreover, method validation demonstrated acceptable results for precision, sensitivity and robustness. The proposed method was applied for the analysis of pharmaceutical dosage forms assuring the therapeutic efficacy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号