首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The development of systems for photocatalytic CO2 reduction with water as a reductant and solar light as an energy source is one of the most important milestones on the way to artificial photosynthesis. Although such reduction can be performed using dye-sensitized molecular photocathodes comprising metal complexes as redox photosensitizers and catalyst units fixed on a p-type semiconductor electrode, the performance of the corresponding photoelectrochemical cells remains low, e.g., their highest incident photon-to-current conversion efficiency (IPCE) equals 1.2%. Herein, we report a novel dye-sensitized molecular photocathode for photocatalytic CO2 reduction in water featuring a polypyrrole layer, [Ru(diimine)3]2+ as a redox photosensitizer unit, and Ru(diimine)(CO)2Cl2 as the catalyst unit and reveal that the incorporation of the polypyrrole network significantly improves reactivity and durability relative to those of previously reported dye-sensitized molecular photocathodes. The irradiation of the novel photocathode with visible light under low applied bias stably induces the photocatalytic reduction of CO2 to CO and HCOOH with high faradaic efficiency and selectivity (even in aqueous solution), and the highest IPCE is determined as 4.7%. The novel photocathode is coupled with n-type semiconductor photoanodes (CoOx/BiVO4 and RhOx/TaON) to construct full cells that photocatalytically reduce CO2 using water as the reductant upon visible light irradiation as the only energy input at zero bias. The artificial Z-scheme photoelectrochemical cell with the dye-sensitized molecular photocathode achieves the highest energy conversion efficiency of 8.3 × 10−2% under the irradiation of both electrodes with visible light, while a solar to chemical conversion efficiency of 4.2 × 10−2% is achieved for a tandem-type cell using a solar light simulator (AM 1.5, 100 mW cm−2).

A novel dye-sensitized molecular photocathode with polypyrrole networks exhibits high efficiency and durability for photocatalytic CO2 reduction by using water as reductant and visible light as energy.  相似文献   

2.
Reduction of CO2 to CO and H2O is a two electron/two proton process. For this process, multinuclear complexes offer advantages by concentrating reduction equivalents more efficiently than mononuclear systems. We present novel complexes with [Re(η6-C6H6)2]+ as scaffold conjugated to one or two catalytically active [Ru(dmbpy)(CO)2Cl2] subunits (dmbpy=5,5′-dimethyl-2,2′-bipyridine). The [Re(η6-C6H6)2]+ scaffold was chosen due to its very high photo- and chemical stability, as well as the multiple degrees of freedom it offers for any conjugated functionalities. High efficiency and selectivity for the reduction of CO2 to CO (over H2 or HCOOH) is reported. TONs and TOFs were found to be comparable or higher than for the catalyst subunit without the rhenium framework. Cooperativity in photo- and electrocatalysis is observed for the complex comprising two catalytic subunits. The synergistic communication between the two catalytic subunits is responsible for the observed enhancement in both photo- and electrocatalytic performance. Confirmation of electronic communication between the two [Ru(dmbpy)(CO)2Cl2] subunits as well as the elucidation of a possible mechanism was supported by electrochemistry, IR-spectroelectrochemistry and DFT studies.  相似文献   

3.
The clusters [H2Os4M(CO)12eta6-C6H6)] (M=Os, Ru) may be deprotonated to generate anions [Os4M(CO)12eta6-C6H6)]2- which react with [M′eta6-C6H5R) (MeCN)3]2+(M=Os, Ru; R=H, Me) to give the bicapped tetrahedral clusters [Os4(CO)12MM′eta6-C6H5R)2]. Whereas [Os4(CO)12M2eta6-C6H6)2] (M=Os, Ru) have one Meta6-C6H6) unit in a site connected to three other metals, {3}, and one in a site connected to four other metals, {4}, [Os4(CO)12OsRueta6-C6H6)2] has the Rueta6-C6H6) unit in the {3} site irrespective of whether the Os or Ru anion is capped. Coupling of these anions with Au2dppm yields [Os4M(CO)12eta6-C6H6)(Au2dppm)] (M=Os, Ru), which have the arene ligand in the axial site of a trigonal bipyramid and the digold unit capping two faces. Reduction of [H2Os5(CO)15] with K/Ph2CO and coupling with [Rueta5-C5H5)(MeCN)3]2+yields the monoanion [Os5(CO)15Rueta5-C5H5)]? which reacts with [AuPPh3]+ generating [Os5(CO)15Rueta5-C5H5)(AuPPh3)] with the “Ru(C5H5)” unit in the terminal {3} site.  相似文献   

4.
The selective formation of dialkyl formamides through photochemical CO2 reduction was developed as a means of utilizing CO2 as a C1 building block. Photochemical CO2 reduction catalyzed by a [Ru(bpy)2(CO)2]2+ (bpy: 2,2′‐bipyridyl)/[Ru(bpy)3]2+/Me2NH/Me2NH2+ system in CH3CN selectively produced dimethylformamide. In this process a ruthenium carbamoyl complex ([Ru(bpy)2(CO)(CONMe2)]+) formed by the nucleophilic attack of Me2NH on [Ru(bpy)2(CO)2]2+ worked as the precursor to DMF. Thus Me2NH acted as both the sacrificial electron donor and the substrate, while Me2NH2+ functioned as the proton source. Similar photochemical CO2 reductions using R2NH and R2NH2+ (R=Et, nPr, or nBu) also afforded the corresponding dialkyl formamides (R2NCHO) together with HCOOH as a by‐product. The main product from the CO2 reduction transitioned from R2NCHO to HCOOH with increases in the alkyl chain length of the R2NH. The selectivity between R2NCHO and HCOOH was found to depend on the rate of [Ru(bpy)2(CO)(CONR2)]+ formation.  相似文献   

5.
Polypyridyl ruthenium(II) dicarbonyl complexes with an N,O- and/or N,N-donor ligand, [Ru(pic)(CO)2Cl2] (1), [Ru(bpy)(pic)(CO)2]+ (2), [Ru(pic)2(CO)2] (3), and [Ru(bpy)2(CO)2]2+ (4) (pic=2-pyridylcarboxylato, bpy=2,2′-bipyridine) were prepared for comparison of the electron donor ability of these ligands to the ruthenium center. A carbonyl group of [Ru(L1)(L2)(CO)2]n (L1, L2=bpy, pic) successively reacted with one and two equivalents of OH to form [Ru(L1)(L2)(CO)(C(O)OH)]n−1 and [Ru(L1)(L2)(CO)(CO2)]n−2. These three complexes exist as equilbrium mixtures in aqueous solutions and the equilibrium constants were determined potentiometrically. Electrochemical reduction of 2 in CO2-saturated CH3CN–H2O at −1.5 V selectively produced CO.  相似文献   

6.
The reactions of mono‐ and bidentate aromatic nitrogen‐containing ligands with [Ru(CO)3Cl2]2 in alcohols have been studied. In alcoholic media the nitrogen ligands act as bases promoting acidic behaviour of alcohols and the formation of alkoxy carbonyls [Ru(N–N)(CO)2Cl(COOR)] and [Ru(N)2(CO)2Cl(COOR)]. Other products are monomers of type [Ru(N)(CO)3Cl2], bridged complexes such as [Ru(CO)3Cl2]2(N), and ion pairs of the type [Ru(CO)3Cl3]? [Ru(N–N)(CO)3Cl]+ (N–N = chelating aromatic nitrogen ligand, N = non‐chelating or bridging ligand). The reaction and the product distribution can be controlled by adjusting the reaction stoichiometry. The reactivity of the new ruthenium complexes was tested in 1‐hexene hydroformylation. The activity can be associated with the degree of stability of the complexes and the ruthenium–ligand interaction. Chelating or bridging nitrogen ligands suppresses the activity strongly compared with the bare ruthenium carbonyl chloride, while the decrease in activity is less pronounced with monodentate ligands. A plausible catalytic cycle is proposed and discussed in terms of ligand–ruthenium interactions. The reactivity of the ligands as well as the catalytic cycle was studied in detail using the computational DFT methods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Crystals of [H5O2][Ru(CO)3Cl3] · SbCl3 are triclinic, space group P1 , with unit cell of dimensions: a = 7.129(2), b = 10.129(3), c = 10.997(3) Å, α = 75.40(2)°, β = 97.17(2)°; γ = 120.94(2)°. The structure was solved from X-ray diffractometer data by Patterson and Fourier synthesis and refined by full matrix least-squares method to R = 3.02% for 3268 independent reflections. The [Ru(CO)3Cl3]? anion has an approximately octahedral fac configuration. The antimony atom has three chlorine neighbours at 2.387(2), 2.364(2) and 2.368(2) Å giving the expected angular conformation and three other neighbours at longer distances completing with the lone pair a monocaped octahedral environment around antimony. The acidic hydrogen has been transfered to two water molecules giving an asymmetric [H5O2]+ ion with a very short hydrogen bond of 2.373(9) Å.  相似文献   

8.
The electron impact induced mass spectra of [CF3SMn(CO)4]2, [CF3SeMn(CO)4]2, [CF3SFe(CO)3]2, [CF3SeFe(CO)3]2, CF3SeFe(CO)2C5H5 and CF3SCr(NO)2C5H5 are reported. These compounds exhibit weak molecular ion peaks and undergo preferential loss of CO or NO groups. The CO or NO free fragments suffer typical loss of ECF2(E = S, Se) with the simultaneous shift of F from carbon to metal. The ions [FFeC5H5]+ and [FCrC5H5]+ in the spectra of the cyclopentadienyl compounds prefer expulsion of π-cyclopentadienyls. The pyrolysis effects on the spectra of the compounds have been studied. An increase in temperature eases the expulsion of ECF2 groups from all the compounds and favors the formation of [Fe(C5H5)2]+ and [Cr(C5H5)2]+ in the cyclopentadienyl compounds.  相似文献   

9.
The five‐coordinate ruthenium N‐heterocyclic carbene (NHC) hydrido complexes [Ru(IiPr2Me2)4H][BArF4] ( 1 ; IiPr2Me2=1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene; ArF=3,5‐(CF3)2C6H3), [Ru(IEt2Me2)4H][BArF4] ( 2 ; IEt2Me2=1,3‐diethyl‐4,5‐dimethylimidazol‐2‐ylidene) and [Ru(IMe4)4H][BArF4] ( 3 ; IMe4=1,3,4,5‐tetramethylimidazol‐2‐ylidene) have been synthesised following reaction of [Ru(PPh3)3HCl] with 4–8 equivalents of the free carbenes at ambient temperature. Complexes 1 – 3 have been structurally characterised and show square pyramidal geometries with apical hydride ligands. In both dichloromethane or pyridine solution, 1 and 2 display very low frequency hydride signals at about δ ?41. The tetramethyl carbene complex 3 exhibits a similar chemical shift in toluene, but shows a higher frequency signal in acetonitrile arising from the solvent adduct [Ru(IMe4)4(MeCN)H][BArF4], 4 . The reactivity of 1 – 3 towards H2 and N2 depends on the size of the N‐substituent of the NHC ligand. Thus, 1 is unreactive towards both gases, 2 reacts with both H2 and N2 only at low temperature and incompletely, while 3 affords [Ru(IMe4)42‐H2)H][BArF4] ( 7 ) and [Ru(IMe4)4(N2)H][BArF4] ( 8 ) in quantitative yield at room temperature. CO shows no selectivity, reacting with 1 – 3 to give [Ru(NHC)4(CO)H][BArF4] ( 9 – 11 ). Addition of O2 to solutions of 2 and 3 leads to rapid oxidation, from which the RuIII species [Ru(NHC)4(OH)2][BArF4] and the RuIV oxo chlorido complex [Ru(IEt2Me2)4(O)Cl][BArF4] were isolated. DFT calculations reproduce the greater ability of 3 to bind small molecules and show relative binding strengths that follow the trend CO ? O2 > N2 > H2.  相似文献   

10.
High-pressure 17O- and 13C-NMR show that [Ru(H2O)6]2+ reacts quantitatively with carbon monoxide (50 bar) in water to form [Ru(CO)(H2O)5]2+.  相似文献   

11.
Two routes to 1,1-dithiolate complexes cis-[Ru(CO)2(S2X)2] [X = NMe2, OEt, PPh2, P(OEt)2] are presented. From the reaction of NH4S2P(OEt)2 with the ruthenium(II) complex generated upon reduction of RuCl3.3H2O by CO in 2-methoxyethanol, along with the expected mononuclear product, cis-[Ru(CO)22-S2P(OEt)2}2], binuclear [Ru(CO){η2-S2P(OEt)2} {μ,η12-S2P(OEt)2}]2 was also produced. The latter has been crystallographically characterized and shows a trans-arrangement of carbonyls and cis-arrangement of terminal and bridging dithiolate ligands.  相似文献   

12.
A porous organic polymer incorporating [(α‐diimine)Re(CO)3Cl] moieties was produced and tested in the photocatalytic reduction of CO2, with NEt3 as a sacrificial donor. The catalyst generated both H2 and CO, although the Re moiety was not required for H2 generation. After an induction period, the Re‐containing porous organic polymer produced CO at a stable rate, unless soluble [(bpy)Re(CO)3Cl] (bpy=2,2′‐bipyridine) was added. This provides the strongest evidence to date that [(α‐diimine)Re(CO)3Cl] catalysts for photocatalytic CO2 reduction decompose through a bimetallic pathway.  相似文献   

13.
Reaction of the complexes Ru(CO)2Cl2L [L = 2,2′-bipyridyl (bpy) or 1,10-phenanthroline (phen)] with trifluoromethanesulphonic acid under carefully controlled conditions yields Ru[cis-(CO)2] [cis-(O3SCF3)2] (bidentate complexes. From reactions of the trifluoromethanesulphonates with the appropriate bidentate ligands, the new complexes [cis-Ru(CO)2-L(L′)]2+ (L as above; L′ = 4,4′-dimethyl-2,2′-bipyridyl or 4,4′-diisopropyl-2,2′-bipyridyl) as well as the known [cis-Ru(CO)2L2]2+ and [cis-Ru(CO)2bpy(phen)]2+ have been prepared.  相似文献   

14.
The reaction of [(Cp*Mo)2(μ‐Cl)2B2H6] ( 1 ) with CO at room temperature led to the formation of the highly fluxional species [{Cp*Mo(CO)2}2{μ‐η22‐B2H4}] ( 2 ). Compound 2, to the best of our knowledge, is the first example of a bimetallic diborane(4) conforming to a singly bridged Cs structure. Theoretical studies show that 2 mimics the Cotton dimolybdenum–alkyne complex [{CpMo(CO)2}2C2H2]. In an attempt to replace two hydrogen atoms of diborane(4) in 2 with a 2e [W(CO)4] fragment, [{Cp*Mo(CO)2}2 B2H2W(CO)4] ( 3 ) was isolated upon treatment with [W(CO)5?thf]. Compound 3 shows the intriguing presence of [B2H2] with a short B?B length of 1.624(4) Å. We isolated the tungsten analogues of 3 , [{Cp*W(CO)2}2B2H2W(CO)4] ( 4 ) and [{Cp*W(CO)2}2B2H2Mo(CO)4] ( 5 ), which provided direct proof of the existence of the tungsten analogue of 2 .  相似文献   

15.
Supramolecular photocatalysts comprising [Ru(diimine)3]2+ photosensitiser and fac-[Re(diimine)(CO)3{OC(O)OC2H4NR2}] catalyst units can be used to reduce CO2 to CO with high selectivity, durability and efficiency. In the presence of triethanolamine, the Re catalyst unit efficiently takes up CO2 to form a carbonate ester complex, and then direct photocatalytic reduction of a low concentration of CO2, e.g., 10% CO2, can be achieved using this type of supramolecular photocatalyst. In this work, the mechanism of the photocatalytic reduction of CO2 was investigated applying such a supramolecular photocatalyst, RuC2Re with a carbonate ester ligand, using time-resolved visible and infrared spectroscopies and electrochemical methods. Using time-resolved spectroscopic measurements, the kinetics of the photochemical formation processes of the one-electron-reduced species RuC2(Re)−, which is an essential intermediate in the photocatalytic reaction, were clarified in detail and its electronic structure was elucidated. These studies also showed that RuC2(Re)− is stable for 10 ms in the reaction solution. Cyclic voltammograms measured at various scan rates besides temperature and kinetic analyses of RuC2(Re)− produced by steady-state irradiation indicated that the subsequent reaction of RuC2(Re)− proceeds with an observed first-order rate constant of approximately 1.8 s−1 at 298 K and is a unimolecular reaction, independent of the concentrations of both CO2 and RuC2(Re)−.

Formation processes and reactivity of an important intermediate of photocatalytic CO2 reduction, one-electron reduced species of a Ru(ii)–Re(i) supramolecular photocatalyst with a carbonate ester ligand, were investigated in detail.  相似文献   

16.
Trans-[RuCl2(CO)2(PEt3)2] reacts with two equivalents of a series of 1,1-dithiolate ligands to form the bis(dithiolate) complexes, cis-[Ru(CO)(PEt3)(S2X)2] (X = CNMe2, CNEt2, COEt, P(OEt)2, PPh2). Two intermediates have been isolated; trans-[Ru(PEt3)2Cl(CO){S2P(OEt)2}] and trans-[Ru(PEt3)2(CO)(η1-S2COEt)(η2-S2COEt)], allowing a simple reaction scheme to be postulated involving three steps; (i) initial replacement of cis carbonyl and chloride ligands, (ii) substitution of the second chloride, (iii) loss of a phosphine. Thermolysis of cis-[Ru(CO)(PEt3)(S2CNMe2)2] with Ru3(CO)12 in xylene affords trinuclear [Ru33-S)2(PEt3)(CO)8] as a result of dithiocarbamate degradation. Crystal structures of cis-[Ru(CO)(PEt3)(S2X)2] (X = NMe2, COEt), trans-[Ru(PEt3)2Cl(CO){S2P(OEt)2}], trans-[Ru(PEt3)2(CO)(η1-S2COEt)(η2-S2COEt)] and [Ru33-S)2(PEt3)(CO)8] are reported.  相似文献   

17.
The reaction of [(Cp*Mo)2(μ‐Cl)2B2H6] ( 1 ) with CO at room temperature led to the formation of the highly fluxional species [{Cp*Mo(CO)2}2{μ‐η22‐B2H4}] ( 2 ). Compound 2, to the best of our knowledge, is the first example of a bimetallic diborane(4) conforming to a singly bridged Cs structure. Theoretical studies show that 2 mimics the Cotton dimolybdenum–alkyne complex [{CpMo(CO)2}2C2H2]. In an attempt to replace two hydrogen atoms of diborane(4) in 2 with a 2e [W(CO)4] fragment, [{Cp*Mo(CO)2}2 B2H2W(CO)4] ( 3 ) was isolated upon treatment with [W(CO)5⋅thf]. Compound 3 shows the intriguing presence of [B2H2] with a short B−B length of 1.624(4) Å. We isolated the tungsten analogues of 3 , [{Cp*W(CO)2}2B2H2W(CO)4] ( 4 ) and [{Cp*W(CO)2}2B2H2Mo(CO)4] ( 5 ), which provided direct proof of the existence of the tungsten analogue of 2 .  相似文献   

18.
A series of in situ-prepared catalytic systems incorporating RuII precursors and bidentate phosphine ligands has been probed in the reductive carboxylation of ethylene in the presence of triethylsilane as reductant. The catalytic production of propionate and acrylate silyl esters was evidenced by high-throughput screening (HTS) and implemented in batch reactor techniques. The most promising catalyst systems identified were made of Ru(H)(Cl)(CO)(PPh3)3 and 1,4-bis(dicyclohexylphosphino)butane (DCPB) or 1,1’-ferrocene-diyl-bis(cyclohexylphosphine) (DCPF). A marked influence of water on the acrylate/propionate selectivity was noted. Turnover numbers [mol mol(Ru)−1] up to 16 for acrylate and up to 68 for propionate were reached under relatively mild conditions (20 bar, 100 °C, 0.5 mol % Ru, 40 mol % H2O vs. HSiEt3). Possible mechanisms are discussed.  相似文献   

19.
Molecular hydrogen, detected by gas-chromatographic and mass-spectrometric measurements, was obtained by irradiating with visible light aqueous hydrochloridic solutions of [Ru(bpy)3]2+ and trivalent titanium. The active species is the 3CT of [Ru(bpy)3]2+, which is quenched by Ti(III). The suggested mechanism is an electron transfer with Ti(II) formation. The back reaction between [Ru(bpy)3]3+ and Ti(II) is hindered by the very fast competitive reaction of Ti(II) (not stable in acid aqueous solutions) with H+, carrying to hydrogen evolution.  相似文献   

20.
A series of heterodinuclear complexes with acetylene dithiolate (acdt2?) as the bridging moiety were synthesised by a facile one‐pot procedure that avoided use of the highly elusive acetylene dithiol. Generation of the W–Ru complex [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] (Tp’=hydrotris(3,5‐dimethylpyrazolyl)borate) and the W–Pd complexes [Tp′W(CN)(CO)(C2S2)Pd(dppe)] and [Tp′W(CO)2(C2S2)Pd(dppe)][PF6] (dppe=1,2‐bis(diphenylphoshino)ethane), which exhibit a [W(η2‐κ2‐C2S2)M] core (M=Ru, Pd), was accomplished by using a transition‐metal‐assisted solvolytical removal of the Me3Si‐ethyl thiol protecting groups. All intermediate species of the reaction have been fully characterised. The highly coloured W–Ru complex [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] shows reversible redox chemistry, as does the prototype complex [Tp′W(CO)2(C2S2)Ru(η5‐C5H5)(PPh3)][PF6]. Single crystal X‐ray diffraction and IR, EPR and UV/Vis spectroscopic studies in conjunction with DFT calculations prove the high electronic delocalisation of states over the acdt2? linker. Comparative studies revealed a higher donor strength and more pronounced dithiolate character of acdt2? in [Tp′W(CN)(CO)(C2S2)Ru(η5‐C5H5)(PPh3)] relative to [Tp′W(CO)2(C2S2)Ru(η5‐C5H5)(PPh3)]+. In addition, the influence of the overall complex charge on the metric parameters was investigated by single‐crystal X‐ray diffraction studies with the W–Pd complexes [Tp′WL2(C2S2)Pd(dppe)] (L=(CN?)(CO) or (CO)2). The central [W(C2S2)Pd] units exhibit high structural similarity, which indicates the extensive delocalisation of charge over both metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号