首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecules with restricted rotation around a single bond or atropisomers are found in a wide number of natural products and bioactive molecules as well as in chiral ligands for asymmetric catalysis and smart materials. Although most of these compounds are biaryls and heterobiaryls displaying a C−C stereogenic axis, there is a growing interest in less common and more challenging axially chiral C−N atropisomers. This review offers an overview of the various methodologies available for their asymmetric synthesis. A brief introduction is initially given to contextualize these axially chiral skeletons, including a historical background and examples of natural products containing axially chiral C−N axes. The preparation of different families of C−N based atropisomers is then presented from anilides to chiral five- and six-membered ring heterocycles. Special emphasis has been given to modern catalytic asymmetric strategies over the past decade for the synthesis of these chiral scaffolds. Applications of these methods to the preparation of natural products and biologically active molecules will be highlighted along the text.  相似文献   

2.
The catalytic asymmetric construction of N−N atropisomeric biaryls remains a formidable challenge. Studies of them lag far behind studies of the more classical carbon-carbon biaryl atropisomers, hampering meaningful development. Herein, the first palladium-catalyzed enantioselective C−H activation of pyrroles for the synthesis of N−N atropisomers is presented. Structurally diverse indole-pyrrole atropisomers possessing a chiral N−N axis were produced with good yields and high enantioselectivities by alkenylation, alkynylation, allylation, or arylation reactions. Furthermore, the kinetic resolution of trisubstituted N−N heterobiaryls with more sterically demanding substituents was also achieved. Importantly, this versatile C−H functionalization strategy enables iterative functionalization of pyrroles with exquisite selectivity, expediting the formation of valuable, complex, N−N atropisomers.  相似文献   

3.
Atroposelective synthesis of axially chiral biaryls by palladium-catalyzed C−H olefination, using tert-leucine as an inexpensive, catalytic, and transient chiral auxiliary, has been realized. This strategy provides a highly efficient and straightforward access to a broad range of enantioenriched biaryls in good yields (up to 98 %) with excellent enantioselectivities (95 to >99 % ee). Kinetic resolution of trisubstituted biaryls bearing sterically more demanding substituents is also operative, thus furnishing the optically active olefinated products with excellent selectivity (95 to >99 % ee, s-factor up to 600).  相似文献   

4.
The direct C−H functionalization of 1,2-benzazaborines, especially asymmetric version, remains a great challenge. Here we report a palladium-catalyzed enantioselective C−H olefination and allylation reactions of 1,2-benzazaborines. This asymmetric approach is a kinetic resolution (KR), providing various C−B axially chiral 2-aryl-1,2-benzazaborines and 3-substituted 2-aryl-1,2-benzazaborines in generally high yields with excellent enantioselectivities (selectivity (S) factor up to 354). The synthetic potential of this reaction is showcased by late-stage modification of complex molecules, scale-up reaction, and applications.  相似文献   

5.
Axially chiral compounds have been always considered a laboratory curiosity with rare prospects of being applied in asymmetric synthesis. Things have changed very quickly in the last twenty years when it was understood the important role and the enormous impact that these compounds have in medicinal, biological and material chemistry. The asymmetric synthesis of atropisomers became a rapidly expanding field and recent reports on the development of N−N atropisomers strongly prove how this research field is a hot topic open to new challenges and frontiers of asymmetric synthesis. This review focuses on the recent advances in the enantioselective synthesis of N−N atropisomers highlighting the strategies and breakthroughs to obtain this novel and stimulating atropisomeric framework.  相似文献   

6.
A simple and ubiquitously present group, free amine, is used as a directing group to synthesize axially chiral biaryl compounds by PdII-catalyzed atroposelective C−H olefination. A broad range of axially chiral biaryl-2-amines can be obtained in good yields with high enantioselectivities (up to 97 % ee). Chiral spiro phosphoric acid (SPA) proved to be an efficient ligand and the loading could be reduced to 1 mol % without erosion of enantiocontrol in gram-scale synthesis. The resulting axially chiral biaryl-2-amines also provide a platform for the synthesis of a set of chiral ligands.  相似文献   

7.
Enantioselective synthesis of N−N biaryl atropisomers is an emerging area but remains underexplored. The development of efficient synthesis of N−N biaryl atropisomers is in great demand. Herein, the construction of N−N biaryl atropisomers through iridium-catalyzed asymmetric C−H alkylation is reported for the first time. In the presence of readily available Ir precursor and Xyl-BINAP, a variety of axially chiral molecules based on indole-pyrrole skeleton were obtained in good yields (up to 98 %) with excellent enantioselectivity (up to 99 % ee). In addition, N−N bispyrrole atropisomers could also be synthesized in excellent yields and enantioselectivity. This method features perfect atom economy, wide substrate scope, and multifunctionalized products allowing diverse transformations.  相似文献   

8.
Axially chiral diaryl ethers, a distinguished class of atropisomers possessing unique dual C−O axis, hold immense potential for diverse research domains. In contrast to the catalytic enantioselective synthesis of conventional single axis bearing atropisomers, the atroposelective synthesis of axially chiral ethers containing flexible C−O axis remains a significant challenge. Herein, we demonstrate the first N-heterocyclic carbene (NHC)-catalyzed synthesis of axially chiral diaryl ethers via atroposelective esterification of dialdehyde-containing diaryl ethers. Mechanistically, the reaction proceeds via NHC-catalyzed desymmetrization strategy to afford the corresponding axially chiral diaryl ether atropisomers in good yields and high enantioselectivities under mild conditions. The derivatization of the synthesized product expands the utility of present strategy via access to a library of C−O axially chiral compounds. The temperature dependency and preliminary investigations on the racemization barrier of C−O bonds are also presented.  相似文献   

9.
N−C axially chiral compounds have emerged recently as appealing motifs for drug design. However, the enantioselective synthesis of such molecules is still poorly developed and surprisingly no metal-catalyzed atroposelective N-arylations have been described. Herein, we disclose an unprecedented Cu-catalyzed atroposelective N−C coupling that proceeds at room temperature. Such mild reaction conditions, which are a crucial parameter for atropostability of the newly generated products, are operative thanks to the use of hypervalent iodine reagents as a highly reactive coupling partners. A large panel of the N−C axially chiral compounds was afforded with very high enantioselectivity (up to >99 % ee) and good yields (up to 76 %). Post-modifications of thus accessed atropisomeric compounds allows further expansion of the diversity of these appealing compounds.  相似文献   

10.
A new and efficient synthesis of 8H-benzo[e]phenanthro[1,10-bc]silines from 2-((2-(arylethynyl)aryl)silyl)aryl triflates under palladium catalysis has been developed. The reaction mechanism was experimentally investigated and a catalytic cycle involving C−H/C−H coupling through a new mode of 1,4-palladium migration with concomitant alkene stereoisomerization is proposed.  相似文献   

11.
An efficient primary-amine-directed, palladium-catalyzed C−H halogenation (X=I, Br, Cl) of phenylalanine derivatives is reported on a range of quaternary amino acid (AA) derivatives thanks to suitable conditions employing trifluoroacetic acid as additive. The extension of this original native functionality-directed ortho-selective halogenation was even demonstrated with the more challenging native phenylalanine as tertiary AA.  相似文献   

12.
To show the synthetic utility of the catalytic C−C activation of less strained substrates, described here are the collective and concise syntheses of the natural products (−)-microthecaline A, (−)-leubehanol, (+)-pseudopteroxazole, (+)-seco-pseudopteroxazole, pseudopterosin A–F and G—J aglycones, and (+)-heritonin. The key step in these syntheses involve a Rh-catalyzed C−C/C−H activation cascade of 3-arylcyclopentanones, which provides a rapid and enantioselective route to access the polysubstituted tetrahydronaphthalene cores presented in these natural products. Other important features include 1) the direct C−H amination of the tetralone substrate in the synthesis of (−)-microthecaline A, 2) the use of phosphoric acid to enhance efficiency and regioselectivity for problematic cyclopentanone substrates in the C−C activation reactions, and 3) the direct conversion of serrulatane into amphilectane diterpenes by an allylic cyclodehydrogenation coupling.  相似文献   

13.
Total synthesis is considered by many as the finest combination of art and science. During the last decades, several concepts were proposed for achieving the perfect vision of total synthesis, such as atom economy, step economy, or redox economy. In this context, C−H functionalization represents the most powerful platform that has emerged in the last years, empowering rapid synthesis of complex natural products and enabling diversification of bioactive scaffolds based on natural product architectures. In this review, we present an overview of the recent strategies towards the total synthesis of heterocyclic natural products enabled by C−H functionalization. Heterocycles represent the most common motifs in drug discovery and marketed drugs. The implementation of C−H functionalization of heterocycles enables novel tactics in the construction of core architectures, but also changes the logic design of retrosynthetic strategies and permits access to natural product scaffolds with novel and enhanced biological activities.  相似文献   

14.
Nanocarbons incorporating non-hexagonal aromatic rings - such as five-, seven-, and eight-membered rings - have various intriguing physical properties such as curved structures, unique one-dimensional packing, and promising magnetic, optical, and conductivity properties. Herein, we report an efficient synthetic approach to polycyclic aromatics containing seven-membered rings via a palladium-catalyzed intramolecular Ar−H/Ar−Br coupling. In addition to all-hydrocarbon scaffolds, heteroatom-embedded heptagon-containing polyarenes can be efficiently constructed with this method. Rhodium- and palladium-catalyzed sequential six- and seven-membered ring formations also afford complex heptagon-containing molecular nanocarbons from readily available arylacetylenes and biphenyl boronic acids. Detailed mechanistic analysis by DFT calculations showed the feasibility of seven-membered ring formation by a concerted metalation-deprotonation mechanism. This reaction can serve as a template for the synthesis of a wide range of seven-membered ring-containing molecular nanocarbons.  相似文献   

15.
Highly efficient synthesis of axially chiral biaryl amines through cobalt-catalyzed atroposelective C−H arylation using easily accessible cobalt(II) salt and salicyloxazoline ligand has been reported. This methodology provides a straightforward and sustainable access to a broad range of enantioenriched biaryl-2-amines in good yields (up to 99 %) with excellent enantioselectivities (up to 99 % ee). The synthetic utility of the unprecedented method is highlighted by its scalability and diverse transformations.  相似文献   

16.
N-arylcarbazole structures are important because of their prevalence in natural products and functional OLED materials. C−H amination of arenes has been widely recognized as the most efficient approach to access these structures. Conventional strategies involving transition-metal catalysts suffer from confined substrate generality and the requirement of exogenous oxidants. Organocatalytic enantioselective C–N chiral axis construction remains elusive. Presented here is the first organocatalytic strategy for the synthesis of novel axially chiral N-arylcarbazole frameworks by the assembly of azonaphthalenes and carbazoles. This reaction accommodates broad substrate scope and gives atropisomeric N-arylcarbazoles in good yields with excellent enantiocontrol. This approach not only offers an alternative to metal-catalyzed C–N cross-coupling, but also brings about opportunities for the exploitation of structurally diverse N-aryl atropisomers and OLED materials.  相似文献   

17.
Enantioconvergent catalysis enables the conversion of racemic molecules into a single enantiomer in perfect yield and is considered an ideal approach for asymmetric synthesis. Despite remarkable advances in this field, enantioconvergent transformations of inert tertiary C−H bonds remain largely unexplored due to the high bond dissociation energy and the surrounding steric repulsion that pose unparalleled constraints on bond cleavage and formation. Here, we report an enantioconvergent Pd-catalyzed alkylation of racemic tertiary allylic C−H bonds of α-alkenes, providing a unique approach to access a broad range of enantioenriched γ,δ-unsaturated carbonyl compounds featuring quaternary carbon stereocenters. Mechanistic studies reveal that a stereoablative event occurs through the rate-limiting cleavage of tertiary allylic C−H bonds to generate σ-allyl-Pd species, and the achieved E/Z-selectivity of σ-allyl-Pd species effectively regulates the diastereoselectivity via a nucleophile coordination-enabled SN2′-allylation pathway.  相似文献   

18.
A stereoselective Pd(PPh3)4-catalyzed C−F bond alkynylation of tetrasubstituted gem-difluoroalkenes with terminal alkynes has been developed. This method gives access to a great variety of conjugated monofluoroenynes bearing a tetrasubstituted alkene moiety with well-defined stereochemistry. Chelation-assisted oxidative addition of Pd to the C−F bond is proposed to account for the high level of stereocontrol. An X-ray crystal structure of a key monofluorovinyl PdII intermediate has been obtained for the first time as evidence for the proposed mechanism.  相似文献   

19.
P-stereogenic compounds are widely used as ligands in asymmetric catalysis and are present in a myriad of bioactive compounds and pharmaceuticals. Yet, their stereocontrolled preparation remains challenging. Herein, we report a novel strategy towards versatile chiral-at-P alkenylphosphonamidates through a one-pot Ni-catalyzed C−P coupling/diastereoselective hydrolysis of readily available phosphoramidites and alkenyl halides. Remarkably, a chemo- and diastereodivergent behavior was observed upon subtle changes in the reaction conditions. Additionally, selective derivatizations of chiral alkenylphosphonamidates demonstrate their versatility as building blocks for the synthesis of structurally diverse P-stereogenic compounds.  相似文献   

20.
Anisodine was synthesized from 3α-hydroxy-6β-acetyltropine in 11 steps. Laevorotary isomer of anisodine was prepared from the asymmetric dihydroxylation of compound 10 via the osmium catalyzed process employing p-chlorobenzoyl dihydroquinidine as the chiral ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号