首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 493 毫秒
1.
A fundamental understanding of surface reconstruction process is pivotal to developing highly efficient lattice oxygen oxidation mechanism (LOM) based electrocatalysts. Traditionally, the surface reconstruction in LOM based metal oxides is believed as an irreversible oxygen redox behavior, due to the much slower rate of OH refilling than that of oxygen vacancy formation. Here, we found that the surface reconstruction in LOM based metal oxides is a spontaneous chemical reaction process, instead of an electrochemical reaction process. During the chemical process, the lattice oxygen atoms were attacked by adsorbed water molecules, leading to the formation of hydroxide ions (OH). Subsequently, the metal-site soluble atoms leached from the oxygen-deficient surface. This work also suggests that the enhancement of surface hydrophilicity could accelerate the surface reconstruction process. Hence, such a finding could add a new layer for the understanding of surface reconstruction mechanism.  相似文献   

2.
Perovskite oxides are regarded as promising electrocatalysts for water splitting due to their cost-effectiveness, high efficiency and durability in the oxygen evolution reaction (OER). Despite these advantages, a fundamental understanding of how critical structural parameters of perovskite electrocatalysts influence their activity and stability is lacking. Here, we investigate the impact of structural defects on OER performance for representative LaNiO3 perovskite electrocatalysts. Hydrogen reduction of 700 °C calcined LaNiO3 induces a high density of surface oxygen vacancies, and confers significantly enhanced OER activity and stability compared to unreduced LaNiO3; the former exhibit a low onset overpotential of 380 mV at 10 mA cm−2 and a small Tafel slope of 70.8 mV dec−1. Oxygen vacancy formation is accompanied by mixed Ni2+/Ni3+ valence states, which quantum-chemical DFT calculations reveal modify the perovskite electronic structure. Further, it reveals that the formation of oxygen vacancies is thermodynamically more favourable on the surface than in the bulk; it increases the electronic conductivity of reduced LaNiO3 in accordance with the enhanced OER activity that is observed.  相似文献   

3.
Oxide-derived Cu (OD−Cu) featured with surface located sub-20 nm nanoparticles (NPs) created via surface structure reconstruction was developed for electrochemical CO2 reduction (ECO2RR). With surface adsorbed hydroxyls (OHad) identified during ECO2RR, it is realized that OHad, sterically confined and adsorbed at OD−Cu by surface located sub-20 nm NPs, should be determinative to the multi-carbon (C2) product selectivity. In situ spectral investigations and theoretical calculations reveal that OHad favors the adsorption of low-frequency *CO with weak C≡O bonds and strengthens the *CO binding at OD−Cu surface, promoting *CO dimerization and then selective C2 production. However, excessive OHad would inhibit selective C2 production by occupying active sites and facilitating competitive H2 evolution. In a flow cell, stable C2 production with high selectivity of ∼60 % at −200 mA cm−2 could be achieved over OD−Cu, with adsorption of OHad well steered in the fast flowing electrolyte.  相似文献   

4.
Li−O2 batteries with bis(trifluoromethanesulfonyl)imide-based ionic liquid (TFSI-IL) electrolyte are promising because TFSI-IL can stabilize O2 to lower charge overpotential. However, slow Li+ transport in TFSI-IL electrolyte causes inferior Li deposition. Here we optimize weak solvating molecule (anisole) to generate anisole-doped ionic aggregate in TFSI-IL electrolyte. Such unique solvation environment can realize not only high Li+ transport parameters but also anion-derived solid electrolyte interface (SEI). Thus, fast Li+ transport is achieved in electrolyte bulk and SEI simultaneously, leading to robust Li deposition with high rate capability (3 mA cm−2) and long cycle life (2000 h at 0.2 mA cm−2). Moreover, Li−O2 batteries show good cycling stability (a small overpotential increase of 0.16 V after 120 cycles) and high rate capability (1 A g−1). This work provides an effective electrolyte design principle to realize stable Li deposition and high-performance Li−O2 batteries.  相似文献   

5.
Aqueous electrolytes typically suffer from poor electrochemical stability; however, eutectic aqueous solutions—25 wt.% LiCl and 62 wt.% H3PO4—cooled to −78 °C exhibit a significantly widened stability window. Integrated experimental and simulation results reveal that, upon cooling, Li+ ions become less hydrated and pair up with Cl, ice-like water clusters form, and H⋅⋅⋅Cl bonding strengthens. Surprisingly, this low-temperature solvation structure does not strengthen water molecules’ O−H bond, bucking the conventional wisdom that increasing water's stability requires stiffening the O−H covalent bond. We propose a more general mechanism for water's low temperature inertness in the electrolyte: less favorable solvation of OH and H+, the byproducts of hydrogen and oxygen evolution reactions. To showcase this stability, we demonstrate an aqueous Li-ion battery using LiMn2O4 cathode and CuSe anode with a high energy density of 109 Wh/kg. These results highlight the potential of aqueous batteries for polar and extraterrestrial missions.  相似文献   

6.
The electrochemical behavior of silver (100) and (111) single crystal surfaces was examined by cyclic voltammetry in aqueous NaOH solution. In the `double layer' region (between −1.2 and 0.1 V (SCE)) adsorption of OH ions followed by phase transformation into an Ag–OH monolayer was found to take place. The difference in peak potentials recorded in 0.1 and 0.01 mol dm−3 NaOH solutions of about 60 mV indicates that one electron is exchanged in the overall electrochemical reaction, implying a complete charge transfer between OH ions and the silver surface. The adsorption process has been modeled to a Frumkin adsorption isotherm. Further oxidation of silver into Ag2O takes place at more positive potentials. The formation of bulk Ag2O results in considerable change to the original single crystal surface. This is likely to be due to roughening of the silver surface as a consequence of the formation and reduction of the oxide.  相似文献   

7.
This work presents the kinetic study of the decomposition in NaOH medium of mercury jarosite whose approximate formula is [Hg0.39(H3O)0.22]Fe2.71(SO4)2.17(OH)4.79(H2O)2.09. The reaction progress takes place on the surface of the compound with diffusion of the hydroxyl ions (OH) from the solution to the particle surface moving the reaction front toward the interior of the particle, with the release of ions SO42− and Hg2+ from the core to the reaction medium. The decomposition curve can be described by three kinetics stages: an induction period followed by a progressive conversion period and ending the reaction in the stabilization zone. The results of X−ray diffraction showed that as the decomposition reaction progresses the partially decomposed solids lost its crystallinity ending as amorphous solids. For the induction period, the reaction order (n ) was 0.52 for [OH] < 0.0187 mol L−1 and when [OH] > 0.0187 mol L−1 n = 1.48, whereas the calculated activation energy (Ea ) was 81.7 kJ mol−1. For the progressive conversion period n = 0.99 for [OH] > 0.0057 mol L−1 and for lower concentrations n ≈ 0, with Ea = 56.9 kJ mol−1, confirming that the decomposition process is controlled by the chemical reaction. Based on the calculated kinetic parameters, the partial and global kinetic expressions of the decomposition process were proposed. These models were compared with the experimental results, and it was favorably proven and described the decomposition process of the mercury jarosite in alkaline medium.  相似文献   

8.
Low band gap tin-lead perovskite solar cells (Sn−Pb PSCs) are expected to achieve higher efficiencies than Pb-PSCs and regarded as key components of tandem PSCs. However, the realization of high efficiency is challenged by the instability of Sn2+ and the imperfections at the charge transfer interfaces. Here, we demonstrate an efficient ideal band gap formamidinium (FA)-based Sn−Pb (FAPb0.5Sn0.5I3) PSC, by manipulating the buried NiOx/perovskite interface with 4-hydroxyphenethyl ammonium halide (OH-PEAX, X=Cl, Br, or I) interlayer, which exhibits fascinating functions of reducing the surface defects of the NiOx hole transport layer (HTL), enhancing the perovskite film quality, and improving both the energy level matching and physical contact at the interface. The effects of different halide anions have been elaborated and a 20.53 % efficiency is obtained with OH-PEABr, which is the highest one for FA-based Sn−Pb PSCs using NiOx HTLs. Moreover, the device stability is also boosted.  相似文献   

9.
Mixed conductive perovskite materials, e.g., La1−xSrxO3−δ (LSCO), have been widely investigated to understand the leverages of doping extent and composition on the oxygen permeability with the aim of developing an oxygen-transport solid electrolyte membrane. However at the present stage fabrication of a dense thin layer of perovskite oxide on a porous tubular support possessing mechanically and chemically stability at high temperatures is still a technological challenge to the endeavor. This is because the asymmetric configuration is a desired model of the commercial oxygen-permeable ceramic membrane reactor. The present work develops a new approach that allows the formation of a complete gas-tight oxygen-permeable thin membrane on the outer surface of a porous CeO2 tube by the means of slurry coating. The oxygen-permeable membrane is a dual-phase composite containing equal volume fractions of CeO2 and LSCO-80 (x = 0.8). In the membrane CeO2 particles are uniformly embedded in the continuous LSCO phase, and this highly dispersed semi-continuous structure could successfully buffer the mechanical stress generated in the LSCO phase due to mismatch of coefficient of thermal expansion (CTE) between the membrane and the support. The oxygen permeation flux tests showed a low activation energy barrier (∼30 kJ/mol) of the whole electrochemical reaction in the temperature range from 400 to 900 °C. The surface de-sorption (or the anodic) process of the oxygen has been simulated using the extended Hückel theory (EHT). The activation energy obtained from the EHT simulation is found very close to the experiment data. In addition, according to the computer simulation, surface oxygen de-sorption activation energy relies on the surface oxygen vacancy density and thus the oxygen partial pressure.  相似文献   

10.
The anode-cathode interplay is an important but rarely considered factor that initiates the degradation of aqueous zinc ion batteries (AZIBs). Herein, to address the limited cyclability issue of V-based AZIBs, Al2(SO4)3 is proposed as decent electrolyte additive to manipulate OH-mediated cross-communication between Zn anode and NaV3O8 ⋅ 1.5H2O (NVO) cathode. The hydrolysis of Al3+ creates a pH≈0.9 strong acidic environment, which unexpectedly prolongs the anode lifespan from 200 to 1000 h. Such impressive improvement is assigned to the alleviation of interfacial OH accumulation by Al3+ adsorption and solid electrolyte interphase formation. Accordingly, the strongly acidified electrolyte, associated with the sedated crossover of anodic OH toward NVO, remarkably mitigate its undesired dissolution and phase transition. The interrupted OH-mediated communication between the two electrodes endows Zn||NVO batteries with superb cycling stability, at both low and high scan rates.  相似文献   

11.
《化学:亚洲杂志》2017,12(20):2720-2726
Iron‐based (oxy)hydroxides are especially attractive electrocatalysts for the oxygen evolution reaction (OER) owing to their earth abundance, low cost, and nontoxicity. However, poor OER kinetics on the surface restricts the performance of the FeOOH electrocatalyst. Herein, a highly efficient and stable Ni(OH)2/β‐like FeOOH electrocatalyst is obtained by facile electroactivation treatment. The activated Ni(OH)2/β‐like FeOOH sample indicates an overpotential of 300 mV at 10 mA cm−2 for the OER, and no clear current decay after 50 h of testing; this is comparable to the most efficient nickel‐ and cobalt‐based electrocatalysts on planar substrates. Furthermore, studies suggest that β‐like FeOOH plays a key role in remarkably enhancing the performance during the electroactivation process owing to its metastable tunnel structure with a lower barrier for interface diffusion of Ni2+ ions between the bilayer electrocatalyst. This study develops a new strategy to explore efficient and low‐cost electrocatalysts and deepens understanding of bilayer electrocatalysts for the OER.  相似文献   

12.
Ion regulation strategy is regarded as a promising pathway for designing transition metal oxide-based electrocatalysts for oxygen evolution reaction (OER) with improved activity and stability. Precise anion conditioning can accurately change the anionic environment so that the acid radical ions (SO42−, PO32−, SeO42−, etc.), regardless of their state (inside the catalyst, on the catalyst surface, or in the electrolyte), can optimize the electronic structure of the cationic active site and further increase the catalytic activity. Herein, we report a new approach to encapsulate S atoms at the tetrahedral sites of the NaCl-type oxide NiO to form a tetraoxo-tetrahedral coordination structure (S-O4) inside the NiO (S-NiO -I). Density functional theory (DFT) calculations and operando vibrational spectroscopy proves that this kind of unique structure could achieve the S-O4 and Ni-S stable structure in S-NiO-I. Combining mass spectroscopy characterization, it could be confirmed that the S-O4 structure is the key factor for triggering the lattice oxygen exchange to participate in the OER process. This work demonstrates that the formation of tetraoxygen tetrahedral structure is a generalized key for boosting the OER performances of transition metal oxides.  相似文献   

13.
The two major issues confronting the commercialization of rechargeable lithium-sulfur (Li−S) batteries are the sluggish kinetics of the sulfur electrochemical reactions on the cathode and inadequate lithium deposition/stripping reversibility on the anode. They are commonly mitigated with additives designed specifically for the anode and the cathode individually. Here, we report the use of a single cathode modifier, In2Se3, which can effectively catalyse the polysulfide reactions on the cathode, and also improve the reversibility of Li deposition and removal on the anode through a LiInS2/LiInSe2 containing solid electrolyte interface formed in situ by the Se and In ions dissolved in the electrolyte. The amounts of dissolved Se and In are small relative to the amount of In2Se3 administered. The benefits of using this single modification approach were verified in Li-metal anode-free Li−S batteries with a Li2S loading of 4 mg cm−2 and a low electrolyte/Li2S ratio of 7.5 μL mg−1. The resulting battery showed 60 % capacity retention after 160 cycles at the 0.2 C rate and an average Coulombic efficiency of 98.27 %, comparing very well with recent studies using separate electrode modifiers.  相似文献   

14.
Oxygen species functionalized graphene (O−G) is an effective electrocatalyst for electrochemically synthesizing hydrogen peroxide (H2O2) by a 2 e oxygen reduction reaction (ORR). The type of oxygen species and degree of carbon crystallinity in O−G are two key factors for the high catalytic performance of the 2 e ORR. However, the general preparing method of O−G by the precursor of graphite has the disadvantages of consuming massive strong oxidant and washing water. Herein, the biomass-based graphene with tunable oxygen species is rapidly fabricated by a CO2 laser. In a flow cell setup, the laser-induced graphene (LIG) with abundant active oxygen species and graphene structure shows high catalytic performance including high Faraday efficiency (over 78 %) and high mass activity (814 mmolgcatalyst−1 h−1), superior to most of the reported carbon-based electrocatalysts. Density function theory demonstrates the meta-C atoms at nearby C−O, O−C=O species are the key catalytic sites. Therefore, we develop one facile method to rapidly convert biomass to graphene electrocatalyst used for H2O2 synthesis.  相似文献   

15.
Lithium metal is a promising anode material for next-generation high-energy-density batteries but suffers from low stripping/plating Coulombic efficiency and dendritic growth particularly at sub-zero temperatures. Herein, a poorly-flammable, locally concentrated ionic liquid electrolyte with a wide liquidus range extending well below 0 °C is proposed for low-temperature lithium metal batteries. Its all-anion Li+ solvation and phase-nano-segregation solution structure are sustained at low temperatures, which, together with a solid electrolyte interphase rich in inorganic compounds, enable dendrite-free operation of lithium metal anodes at −20 °C and 0.5 mA cm−2, with a Coulombic efficiency of 98.9 %. As a result, lithium metal batteries coupling thin lithium metal anodes (4 mAh cm−2) and high-loading LiNi0.8Co0.15Al0.05O2 cathodes (10 mg cm−2) retain 70 % of the initial capacity after 100 cycles at −20 °C. These results, as a proof of concept, demonstrate the applicability of locally concentrated ionic liquid electrolytes for low-temperature lithium metal batteries.  相似文献   

16.
OH → Cl Anionic exchange in lead hydroxyl apatite. Influence of Cl concentration in the solution. This work is devoted to the study of OH → Cl anionic exchange in hydroxyl apatite Pb10(PO4)6(OH)2. This exchange involves the Cl anions of an aqueous solution and OH of the apatite grains. The kinetics of the exchange reaction were experimentally studied and an interpretation of Cl concentration influence is proposed. It involves phenomena which may occur at the solid solution interface.  相似文献   

17.
Establishing the atomic-scale structure of metal-oxide surfaces during electrochemical reactions is a key step to modeling this important class of electrocatalysts. Here, we demonstrate that the characteristic (√2×√2)R45° surface reconstruction formed on (001)-oriented magnetite single crystals is maintained after immersion in 0.1 M NaOH at 0.20 V vs. Ag/AgCl and we investigate its dependence on the electrode potential. We follow the evolution of the surface using in situ and operando surface X-ray diffraction from the onset of hydrogen evolution, to potentials deep in the oxygen evolution reaction (OER) regime. The reconstruction remains stable for hours between −0.20 and 0.60 V and, surprisingly, is still present at anodic current densities of up to 10 mA cm−2 and strongly affects the OER kinetics. We attribute this to a stabilization of the Fe3O4 bulk by the reconstructed surface. At more negative potentials, a gradual and largely irreversible lifting of the reconstruction is observed due to the onset of oxide reduction.  相似文献   

18.
Aqueous rechargeable batteries are prospective candidates for large-scale grid energy storage. However, traditional anode materials applied lack acid-alkali co-tolerance. Herein, we report a covalent organic framework containing pyrazine (C=N) and phenylimino (−NH−) groups (HPP-COF) as a long-cycle and high-rate anode for both acidic and alkaline batteries. The HPP-COF′s robust covalent linkage and the hydrogen bond network between −NH− and water molecules collectively improve the acid-alkaline co-tolerance. More importantly, the hydrogen bond network promotes the rapid transport of H+/OH by the Grotthuss mechanism. As a result, the HPP-COF delivers a superior capacity and cycle stability (66.6 mAh g−1@ 30 A g−1, over 40000 cycles in 1 M H2SO4 electrolyte; 91.7 mAh g−1@ 100 A g−1, over 30000 cycles @ 30 A g−1 in 1 M NaOH electrolyte). The work opens a new direction for the structural design and application of COF materials in acidic and alkaline batteries.  相似文献   

19.
Electrocatalysts have been developed to improve the efficiency of gas release for oxygen evolution reaction (OER), and finding a simple and efficient method for efficient electrocatalysts has inspired research enthusiasm. Herein, we report bimetallic metal-organic gels derived from phytic acid (PA) and mixed transition metal ions to explore their performance in electrocatalytic oxygen evolution reaction. PA is a natural phosphorus-rich organic compound, which can be obtained from plant seeds and grains. PA reacts with bimetallic ions (Fe3+ and Co2+) in a facile one-pot synthesis under mild conditions to form PA-FeCo bimetallic gels, and the corresponding aerogels are further partially reduced with NaBH4 to improve the electrocatalytic activity. Mixed valence states of Fe(II)/Fe(III) and Co(III)/Co(II) are present in the materials. Excellent OER performance in terms of overpotential (257 mV at 20 mA cm−2) and Tafel slope (36 mV dec−1) is achieved in an alkaline electrolyte. This reduction method is superior to the pyrolysis method by well maintaining the gel morphology structure. This strategy is conducive to the further improvement of the performance of metal-organic electrocatalysts, and provides guidance for the subsequent application of metal-organic gel electrocatalysts.  相似文献   

20.
The preparation and characterization of the cocrystalline solid–organic sodium ion electrolyte NaClO4(DMF)3 (DMF=dimethylformamide) is described. The crystal structure of NaClO4(DMF)3 reveals parallel channels of Na+ and ClO4 ions. Pressed pellets of microcrystalline NaClO4(DMF)3 exhibit a conductivity of 3×10−4 S cm−1 at room temperature with a low activation barrier to conduction of 25 kJ mol−1. SEM revealed thin liquid interfacial contacts between crystalline grains, which promote conductivity. The material melts gradually between 55–65 °C, but does not decompose, and upon cooling, it resolidifies as solid NaClO4(DMF)3, permitting melt casting of the electrolyte into thin films and the fabrication of cells in the liquid state and ensuring penetration of the electrolyte between the electrode active particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号