首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
N-alkylisonitrile, a precursor to isonitrile-containing lipopeptides, is biosynthesized by decarboxylation-assisted -N≡C group (isonitrile) formation by using N-alkylglycine as the substrate. This reaction is catalyzed by iron(II) and 2-oxoglutarate (Fe/2OG) dependent enzymes. Distinct from typical oxygenation or halogenation reactions catalyzed by this class of enzymes, installation of the isonitrile group represents a novel reaction type for Fe/2OG enzymes that involves a four-electron oxidative process. Reported here is a plausible mechanism of three Fe/2OG enzymes, Sav607, ScoE and SfaA, which catalyze isonitrile formation. The X-ray structures of iron-loaded ScoE in complex with its substrate and the intermediate, along with biochemical and biophysical data reveal that -N≡C bond formation involves two cycles of Fe/2OG enzyme catalysis. The reaction starts with an FeIV-oxo-catalyzed hydroxylation. It is likely followed by decarboxylation-assisted desaturation to complete isonitrile installation.  相似文献   

2.
N‐alkylisonitrile, a precursor to isonitrile‐containing lipopeptides, is biosynthesized by decarboxylation‐assisted ‐N≡C group (isonitrile) formation by using N‐alkylglycine as the substrate. This reaction is catalyzed by iron(II) and 2‐oxoglutarate (Fe/2OG) dependent enzymes. Distinct from typical oxygenation or halogenation reactions catalyzed by this class of enzymes, installation of the isonitrile group represents a novel reaction type for Fe/2OG enzymes that involves a four‐electron oxidative process. Reported here is a plausible mechanism of three Fe/2OG enzymes, Sav607, ScoE and SfaA, which catalyze isonitrile formation. The X‐ray structures of iron‐loaded ScoE in complex with its substrate and the intermediate, along with biochemical and biophysical data reveal that ‐N≡C bond formation involves two cycles of Fe/2OG enzyme catalysis. The reaction starts with an FeIV‐oxo‐catalyzed hydroxylation. It is likely followed by decarboxylation‐assisted desaturation to complete isonitrile installation.  相似文献   

3.
Reported herein are the hydrogen atom transfer (HAT) reactions of two closely related dicationic iron tris(alpha-diimine) complexes. FeII(H2bip) (iron(II) tris[2,2'-bi-1,4,5,6-tetrahydropyrimidine]diperchlorate) and FeII(H2bim) (iron(II) tris[2,2'-bi-2-imidazoline]diperchlorate) both transfer H* to TEMPO (2,2,6,6-tetramethyl-1-piperidinoxyl) to yield the hydroxylamine, TEMPO-H, and the respective deprotonated iron(III) species, FeIII(Hbip) or FeIII(Hbim). The ground-state thermodynamic parameters in MeCN were determined for both systems using both static and kinetic measurements. For FeII(H2bip) + TEMPO, DeltaG degrees = -0.3 +/- 0.2 kcal mol-1, DeltaH degrees = -9.4 +/- 0.6 kcal mol-1, and DeltaS degrees = -30 +/- 2 cal mol-1 K-1. For FeII(H2bim) + TEMPO, DeltaG degrees = 5.0 +/- 0.2 kcal mol-1, DeltaH degrees = -4.1 +/- 0.9 kcal mol-1, and DeltaS degrees = -30 +/- 3 cal mol-1 K-1. The large entropy changes for these reactions, |TDeltaS degrees | = 9 kcal mol-1 at 298 K, are exceptions to the traditional assumption that DeltaS degrees approximately 0 for simple HAT reactions. Various studies indicate that hydrogen bonding, solvent effects, ion pairing, and iron spin equilibria do not make major contributions to the observed DeltaS degrees HAT. Instead, this effect arises primarily from changes in vibrational entropy upon oxidation of the iron center. Measurement of the electron-transfer half-reaction entropy, |DeltaS degrees Fe(H2bim)/ET| = 29 +/- 3 cal mol-1 K-1, is consistent with a vibrational origin. This conclusion is supported by UHF/6-31G* calculations on the simplified reaction [FeII(H2N=CHCH=NH2)2(H2bim)]2+...ONH2 left arrow over right arrow [FeII(H2N=CHCH=NH2)2(Hbim)]2+...HONH2. The discovery that DeltaS degrees HAT can deviate significantly from zero has important implications on the study of HAT and proton-coupled electron-transfer (PCET) reactions. For instance, these results indicate that free energies, rather than enthalpies, should be used to estimate the driving force for HAT when transition-metal centers are involved.  相似文献   

4.
Mononuclear nonheme iron(III) complexes of tetradentate ligands containing two deprotonated amide moieties, [Fe(Me(2)bpb)Cl(H(2)O)] (3 a) and [Fe(bpc)Cl(H(2)O)] (4 a), were prepared by substitution reactions involving the previously synthesized iron(III) complexes [Et(3)NH][Fe(Me(2)bpb)Cl(2)] (3) and [Et(3)NH][Fe(bpc)Cl(2)] (4). Complexes 3 a and 4 a were characterized by IR and elemental analysis, and complex 3 a also by X-ray crystallography. Nonheme iron(III) complexes 3, 3 a, 4, and 4 a catalyze olefin epoxidation and alcohol oxidation on treatment with m-chloroperbenzoic acid. Pairwise comparisons of the reactivity of these complexes revealed that the nature of the axial ligand (Cl(-) versus H(2)O) influences the yield of oxidation products, whereas an electronic change in the supporting chelate ligand has little effect. Hydrocarbon oxidation by these catalysts was proposed to involve an iron(V) oxo species which is formed on heterolytic O-O bond cleavage of an iron acylperoxo intermediate (FeOOC(O)R). Evidence for this iron(V) oxo species was derived from KIE (k(H)/k(D)) values, H(2) (18)O exchange experiments, and the use of peroxyphenylacetic acid (PPAA) as the peracid. Our results suggest that an Fe(V)=O moiety can form in a system wherein the supporting chelate ligand comprises a mixture of neutral and anionic nitrogen donors. This work is relevant to the chemistry of mononuclear nonheme iron enzymes that are proposed to oxidize organic substrates via reaction pathways involving high-valent iron oxo species.  相似文献   

5.
In the literature, iron-oxo complexes have been isolated and their hydrogen atom transfer (HAT) reactions have been studied in detail. Iron-imido complexes have been isolated more recently, and the community needs experimental evaluations of the mechanism of HAT from late-metal imido species. We report a mechanistic study of HAT by an isolable iron(III) imido complex, L(Me)FeNAd (L(Me) = bulky β-diketiminate ligand, 2,4-bis(2,6-diisopropylphenylimido)pentyl; Ad = 1-adamantyl). HAT is preceded by binding of tert-butylpyridine ((t)Bupy) to form a reactive four-coordinate intermediate L(Me)Fe(NAd)((t)Bupy), as shown by equilibrium and kinetic studies. In the HAT step, very large substrate H/D kinetic isotope effects around 100 are consistent with C-H bond cleavage. The elementary HAT rate constant is increased by electron-donating groups on the pyridine additive, and by a more polar medium. When combined with the faster rate of HAT from indene versus cyclohexadiene, this trend is consistent with H(+) transfer character in the HAT transition state. The increase in HAT rate in the presence of (t)Bupy may be explained by a combination of electronic (weaker Fe=N π-bonding) and thermodynamic (more exothermic HAT) effects. Most importantly, HAT by these imido complexes has a strong dependence on the size of the hydrocarbon substrate. This selectivity comes from steric hindrance by the spectator ligands, a strategy that has promise for controlling the regioselectivity of these C-H bond activation reactions.  相似文献   

6.
7.
Many enzymes in nature utilize molecular oxygen on an iron center for the catalysis of substrate hydroxylation. In recent years, great progress has been made in understanding the function and properties of iron(IV)-oxo complexes; however, little is known about the reactivity of iron(II)-superoxo intermediates in substrate activation. It has been proposed recently that iron(II)-superoxo intermediates take part as hydrogen abstraction species in the catalytic cycles of nonheme iron enzymes. To gain insight into oxygen atom transfer reactions by the nonheme iron(II)-superoxo species, we performed a density functional theory study on the aliphatic and aromatic hydroxylation reactions using a biomimetic model complex. The calculations show that nonheme iron(II)-superoxo complexes can be considered as effective oxidants in hydrogen atom abstraction reactions, for which we find a low barrier of 14.7 kcal mol(-1) on the sextet spin state surface. On the other hand, electrophilic reactions, such as aromatic hydroxylation, encounter much higher (>20 kcal mol(-1)) barrier heights and therefore are unlikely to proceed. A thermodynamic analysis puts our barrier heights into a larger context of previous studies using nonheme iron(IV)-oxo oxidants and predicts the activity of enzymatic iron(II)-superoxo intermediates.  相似文献   

8.
9.
Enzymatic hydroxylation reactions carried out by 2-oxoglutarate (2OG) dependent iron-containing oxygenases were recently implicated in oxygen sensing. In addition to oxygen depletion, two metals, cobalt and nickel, are capable of inducing hypoxic stress in cells by inhibiting oxygenase activity. Two possible scenarios have been proposed for the explanation of the hypoxic effects of cobalt and nickel: oxidation of enzyme-bound iron following cobalt or nickel exposure, and substitution of iron by cobalt or nickel. Here, by using density functional theory calculations, we modeled the reaction route from the reaction components to the high-spin metal-oxide intermediate in the activation of oxygen molecule by 2OG-dependent enzymes for three metal ions Fe(II), Ni(II), and Co(II) in the active site. An initial molecular model was constructed based on the crystal structure of iron-containing asparaginyl hydroxylase (FIH-1). Nickel- and cobalt-containing enzymes were modeled by a consequent replacement of the iron in the active center. The energy profiles connecting stationary points on the potential surfaces were computed by using the intrinsic reaction coordinate (IRC) technique from the located transition states. The results of calculations show that the substitution of iron by nickel or cobalt modifies the reaction energy profile; however, qualitatively, the reaction mechanism remains essentially the same. Thus, we would postulate that if the iron ion in the active site were substitutable by nickel and/or cobalt ions enzyme activity would be considerably altered due to high activation barriers.  相似文献   

10.
The Rieske dioxygenases are a group of non-heme iron enzymes, which catalyze the stereospecific cis-dihydroxylation of its substrates. Herein, we report the iron(II) coordination chemistry of the ligands 3,3-bis(1-methylimidazol-2-yl)propionate (L1) and its neutral propyl ester analogue propyl 3,3-bis(1-methylimidazol-2-yl)propionate (PrL1). The molecular structures of two iron(II) complexes with PrL1 were determined and two different coordination modes of the ligand were observed. In [Fe(II)(PrL1)(2)](BPh(4))(2) (3) the ligand is facially coordinated to the metal with an N,N,O donor set, whereas in [Fe(II)(PrL1)(2)(MeOH)(2)](OTf)(2) (4) a bidentate N,N binding mode is found. In 4, the solvent molecules are in a cis arrangement with respect to each other. Complex 4 is a close structural mimic of the crystallographically characterized non-heme iron(II) enzyme apocarotenoid-15-15'-oxygenase (APO). The mechanistic features of APO are thought to be similar to those of the Rieske oxygenases, the original inspiration for this work. The non-heme iron complexes [Fe(II)(PrL1)(2)](OTf)(2) (2) and [Fe(II)(PrL1)(2)](BPh(4))(2) (3) were tested in olefin oxidation reactions with H(2)O(2) as the terminal oxidant. Whereas 2 was an active catalyst and both epoxide and cis-dihydroxylation products were observed, 3 showed negligible activity under the same conditions, illustrating the importance of the anion in the reaction.  相似文献   

11.
An iron(II) complex with a pyridine-containing 14-membered macrocyclic (PyMAC) ligand L1 (L1 = 2,7,12-trimethyl-3,7,11,17-tetra-azabicyclo[11.3.1]heptadeca-1(17),13,15-triene), 1, was prepared and characterized. Complex 1 contains low-spin iron(II) in a pseudo-octahedral geometry as determined by X-ray crystallography. Magnetic susceptibility measurements (298 K, Evans method) and M?ssbauer spectroscopy (90 K, δ = 0.50(2) mm/s, ΔE(Q) = 0.78(2) mm/s) confirmed that the low-spin configuration of Fe(II) is retained in liquid and frozen acetonitrile solutions. Cyclic voltammetry revealed a reversible one-electron oxidation/reduction of the iron center in 1, with E(1/2)(Fe(III)/Fe(II)) = 0.49 V vs Fc(+)/Fc, a value very similar to the half-wave potentials of related macrocyclic complexes. Complex 1 catalyzed the epoxidation of cyclooctene and other olefins with H(2)O(2). Low-temperature stopped-flow kinetic studies demonstrated the formation of an iron(IV)-oxo intermediate in the reaction of 1 with H(2)O(2) and concomitant partial ligand oxidation. A soluble iodine(V) oxidant, isopropyl 2-iodoxybenzoate, was found to be an excellent oxygen atom donor for generating Fe(IV)-oxo intermediates for additional spectroscopic (UV-vis in CH(3)CN: λ(max) = 705 nm, ε ≈ 240 M(-1) cm(-1); M?ssbauer: δ = 0.03(2) mm/s, ΔE(Q) = 2.00(2) mm/s) and kinetic studies. The electrophilic character of the (L1)Fe(IV)═O intermediate was established in rapid (k(2) = 26.5 M(-1) s(-1) for oxidation of PPh(3) at 0 °C), associative (ΔH(?) = 53 kJ/mol, ΔS(?) = -25 J/K mol) oxidation of substituted triarylphosphines (electron-donating substituents increased the reaction rate, with a negative value of Hammet's parameter ρ = -1.05). Similar double-mixing kinetic experiments demonstrated somewhat slower (k(2) = 0.17 M(-1) s(-1) at 0 °C), clean, second-order oxidation of cyclooctene into epoxide with preformed (L1)Fe(IV)═O that could be generated from (L1)Fe(II) and H(2)O(2) or isopropyl 2-iodoxybenzoate. Independently determined rates of ferryl(IV) formation and its subsequent reaction with cyclooctene confirmed that the Fe(IV)-oxo species, (L1)Fe(IV)═O, is a kinetically competent intermediate for cyclooctene epoxidation with H(2)O(2) at room temperature. Partial ligand oxidation of (L1)Fe(IV)═O occurs over time in oxidative media, reducing the oxidizing ability of the ferryl species; the macrocyclic nature of the ligand is retained, resulting in ferryl(IV) complexes with Schiff base PyMACs. NH-groups of the PyMAC ligand assist the oxygen atom transfer from ferryl(IV) intermediates to olefin substrates.  相似文献   

12.
Using a single ferrous active site, clavaminate synthase 2 (CS2) activates O(2) and catalyzes the hydroxylation of deoxyguanidinoproclavaminic acid (DGPC), the oxidative ring closure of proclavaminic acid (PC), and the desaturation of dihydroclavaminic acid (and a substrate analogue, deoxyproclavaminic acid (DPC)), each coupled to the oxidative decarboxylation of cosubstrate, alpha-ketoglutarate (alpha-KG). CS2 can also catalyze an uncoupled decarboxylation of alpha-KG both in the absence and in the presence of substrate, which results in enzyme deactivation. Resting CS2/Fe(II) has a six-coordinate Fe(II) site, and alpha-KG binds to the iron in a bidentate mode. The active site becomes five-coordinate only when both substrate and alpha-KG are bound, the latter still in a bidentate mode. Absorption, CD, MCD, and VTVH MCD studies of the interaction of CS2 with DGPC, PC, and DPC provide significant molecular level insight into the structure/function correlations of this multifunctional enzyme. There are varying amounts of six-coordinate ferrous species in the substrate complexes, which correlate to the uncoupled reaction. Five-coordinate ferrous species with similar geometric and electronic structures are present for all three substrate/alpha-KG complexes. Coordinative unsaturation of the Fe(II) in the presence of both cosubstrate and substrate appears to be critical for the coupling of the oxidative decarboxylation of alpha-KG to the different substrate oxidation reactions. In addition to the substrate orientation relative to the open coordination position on the iron site, it is hypothesized that the enzyme can affect the nature of the reactivity by further regulating the binding energy of the water to the ferrous species in the enzyme/succinate/product complex.  相似文献   

13.
Extradiol catecholic dioxygenases catalyze the cleavage of the aromatic ring of the substrate with incorporation of both oxygen atoms from O2. These enzymes are important in nature for the recovery of large amounts of carbon from aromatic compounds. The catalytic site contains either Fe or Mn coordinated by a facial triad of two His and one Glu or Asp residues. Previous studies have shown that Fe(II) and Mn(II) can be interchanged in enzymes from different organisms to catalyze similar substrate reactions. In combination, quantitative electron paramagnetic resonance spectroscopy and rapid freeze-quench experiments allow us to follow the concentrations of four different Mn species, including key metal intermediates in the catalytic cycle, as the enzyme turns over its natural substrate. Two intermediates are observed: a Mn(III)-radical species which is either Mn-superoxide or Mn-substrate radical, and a unique Mn(II) species which is involved in the rate-limiting step of the cycle and may be Mn-alkylperoxo.  相似文献   

14.
High-valent iron-oxo species have frequently been invoked in the oxidation of hydrocarbons by both heme and non-heme enzymes. Although a formally Fe(V)=O species, that is, [(Por(*))Fe(IV)=O](+), has been widely accepted as the key oxidant in stereospecific alkane hydroxylation by heme systems, it is not established that such a high-valent state can be accessed by a non-heme ligand environment. Herein we report a systematic study on alkane oxidations with H(2)O(2) catalyzed by a group of non-heme iron complexes, that is, [Fe(II)(TPA)(CH(3)CN)(2)](2+) (1, TPA = tris(2-pyridylmethyl)amine) and its alpha- and beta-substituted analogues. The reactivity patterns of this family of Fe(II)(TPA) catalysts can be modulated by the electronic and steric properties of the ligand environment, which affects the spin states of a common Fe(III)-OOH intermediate. Such an Fe(III)-peroxo species is high-spin when the TPA ligand has two or three alpha-substituents and is proposed to be directly responsible for the selective C-H bond cleavage of the alkane substrate. The thus-generated alkyl radicals, however, have relatively long lifetimes and are susceptible to radical epimerization and trapping by O(2). On the other hand, 1 and the beta-substituted Fe(II)(TPA) complexes catalyze stereospecific alkane hydroxylation by a mechanism involving both a low-spin Fe(III)-OOH intermediate and an Fe(V)=O species derived from O-O bond heterolysis. We propose that the heterolysis pathway is promoted by two factors: (a) the low-spin iron(III) center which weakens the O-O bond and (b) the binding of an adjacent water ligand that can hydrogen bond to the terminal oxygen of the hydroperoxo group and facilitate the departure of the hydroxide. Evidence for the Fe(V)=O species comes from isotope-labeling studies showing incorporation of (18)O from H(2)(18)O into the alcohol products. (18)O-incorporation occurs by H(2)(18)O binding to the low-spin Fe(III)-OOH intermediate, its conversion to a cis-H(18)O-Fe(V)=O species, and then oxo-hydroxo tautomerization. The relative contributions of the two pathways of this dual-oxidant mechanism are affected by both the electron donating ability of the TPA ligand and the strength of the C-H bond to be broken. These studies thus serve as a synthetic precedent for an Fe(V)=O species in the oxygen activation mechanisms postulated for non-heme iron enzymes such as methane monooxygenase and Rieske dioxygenases.  相似文献   

15.
Insertion of iron(II) into 6,11,16,21-tetraaryl-3-aza-m-benziporphyrin (N-confused pyriporphyrin, (PyPH)H) yielded the high-spin iron(II) complex, (PyPH)Fe(II)Br. The coordination of iron(II) to the perimeter nitrogen atom of (PyPH)Fe(II)Br resulted in the formation of the diiron species. Oxidation and oxygenation of (PyPH)Fe(II)Br were followed by 1H NMR spectroscopy. The addition of Br2 to the solution of (PyPH)Fe(II)Br in the absence of dioxygen results in a one-electron oxidation yielding the high-spin iron(III) N-confused pyriporphyrin [(PyPH)Fe(III)Br]+ which preserves the side-on interaction between the inverted pyridine ring and metal ion. The reaction of (PyPH)Fe(II)Br with dioxygen ends up with the formation of a five-coordinate species (PyPO)Fe(III)Br] ((PyPOH)H = 3-aza-22-hydroxy-m-benziporphyrin, PyPO = the corresponding dianion) which is formed by oxygenation at the C(22) position. Coordination of a metal ion by 3-aza-22-hydroxy-benziporphyrin imposes a steric constraint on the geometry of the ligand. The halide ligand of (PyPO)Fe(III)Br coordinates on one of the two inequivalent faces of the macrocycle, leading to two distinct species: syn and anti. The (1)H NMR spectra of paramagnetic iron(II) and iron(III) N-confused pyriporphyrin complexes have been examined. The characteristic patterns of pyrrole and pyridine resonances have been found to be diagnostic of the ground electronic state of iron and the donor nature of the C(22)H and N(3) centers. The enormous downfield H(22) paramagnetic shift, determined for the iron(II) N-confused pyriporphyrin, provides a distinct resonance in a peculiar spectroscopic window (350-800 ppm) for a series of axial ligands which can be considered as a diagnostic sign of an agostic Fe(II)...{C(22)-H} interaction. Coordination of the pyridine moiety via the perimeter N(3) atom is reflected unambiguously by the H(2/4) resonance at 201 ppm.  相似文献   

16.
A terminal iridium oxo complex with an open‐shell (S=1) ground state was isolated upon hydrogen atom transfer (HAT) from the respective iridium(II) hydroxide. Electronic structure examinations support large spin delocalization to the oxygen atom. Selected oxo transfer reactions indicate the ambiphilic reactivity of the iridium oxo moiety. Calorimetric and computational examinations of the HAT revealed a bond dissociation free energy for the IrO?H bond that is sufficient for hydrogen atom abstraction towards C?H bonds and small contributions from entropy and spin–orbit coupling to the HAT thermochemistry.  相似文献   

17.
The mechanisms of oxidative N-dealkylation of amines by heme enzymes including peroxidases and cytochromes P450 and by functional models for the active Compound I species have long been studied. A debated issue has concerned in particular the character of the primary step initiating the oxidation sequence, either a hydrogen atom transfer (HAT) or an electron transfer (ET) event, facing problems such as the possible contribution of multiple oxidants and complex environmental effects. In the present study, an oxo iron(IV) porphyrin radical cation intermediate 1, [(TPFPP)*+ Fe(IV)=O]+ (TPFPP = meso-tetrakis (pentafluorophenyl)porphinato dianion), functional model of Compound I, has been produced as a bare species. The gas-phase reaction with amines (A) studied by ESI-FT-ICR mass spectrometry has revealed for the first time the elementary steps and the ionic intermediates involved in the oxidative activation. Ionic products are formed involving ET (A*+, the amine radical cation), formal hydride transfer (HT) from the amine ([A(-H)]+, an iminium ion), and oxygen atom transfer (OAT) to the amine (A(O), likely a carbinolamine product), whereas an ionic product involving a net initial HAT event is never observed. The reaction appears to be initiated by an ET event for the majority of the tested amines which included tertiary aliphatic and aromatic amines as well as a cyclic and a secondary amine. For a series of N,N-dimethylanilines the reaction efficiency for the ET activated pathways was found to correlate with the ionization energy of the amine. A stepwise pathway accounts for the C-H bond activation resulting in the formal HT product, namely a primary ET process forming A*+, which is deprotonated at the alpha-C-H bond forming an N-methyl-N-arylaminomethyl radical, A(-H)*, readily oxidized to the iminium ion, [A(-H)]+. The kinetic isotope effect (KIE) for proton transfer (PT) increases as the acidity of the amine radical cation increases and the PT reaction to the base, the ferryl group of (TPFPP)Fe(IV)=O, approaches thermoneutrality. The ET reaction displayed by 1 with gaseous N,N-dimethylaniline finds a counterpart in the ET reactivity of FeO+, reportedly a potent oxidant in the gas phase, and with the barrierless ET process for a model (P)*+ Fe(IV)=O species (where P is the porphine dianion) as found by theoretical calculations. Finally, the remarkable OAT reactivity of 1 with C6F5N(CH3)2 may hint to a mechanism along a route of diverse spin multiplicity.  相似文献   

18.
Hydrogen atom, proton and electron transfer self-exchange and cross-reaction rates have been determined for reactions of Os(IV) and Os(III) aniline and anilide complexes. Addition of an H-atom to the Os(IV) anilide TpOs(NHPh)Cl(2) (Os(IV)NHPh) gives the Os(III) aniline complex TpOs(NH(2)Ph)Cl(2) (Os(III)NH(2)Ph) with a new 66 kcal mol(-1) N-H bond. Concerted transfer of H* between Os(IV)NHPh and Os(III)NH(2)Ph is remarkably slow in MeCN-d(3), with k(ex)(H*) = (3 +/- 2) x 10(-3) M(-1) s(-1) at 298 K. This hydrogen atom transfer (HAT) reaction could also be termed proton-coupled electron transfer (PCET). Related to this HAT process are two proton transfer (PT) and two electron transfer (ET) self-exchange reactions, for instance, the ET reactions Os(IV)NHPh + Os(III)NHPh(-) and Os(IV)NH(2)Ph(+) + Os(III)NH(2)Ph. All four of these PT and ET reactions are much faster (k = 10(3)-10(5) M(-1) s(-1)) than HAT self-exchange. This is the first system where all five relevant self-exchange rates related to an HAT or PCET reaction have been measured. The slowness of concerted transfer of H* between Os(IV)NHPh and Os(III)NH(2)Ph is suggested to result not from a large intrinsic barrier but rather from a large work term for formation of the precursor complex to H* transfer and/or from significantly nonadiabatic reaction dynamics. The energetics for precursor complex formation is related to the strength of the hydrogen bond between reactants. To probe this effect further, HAT cross-reactions have been performed with sterically hindered aniline/anilide complexes and nitroxyl radical species. Positioning steric bulk near the active site retards both H* and H(+) transfer. Net H* transfer is catalyzed by trace acids and bases in both self-exchange and cross reactions, by stepwise mechanisms utilizing the fast ET and PT reactions.  相似文献   

19.
The reaction of TEMPO with the iron(I) synthon PhB(MesIm)(3)Fe(COE) leads to formation of the κ(1)-TEMPO complex PhB(MesIm)(3)Fe(TEMPO). Structural and spectroscopic data establish the complex contains divalent iron bound to a nitroxido anion and is isoelectronic to an iron(II) peroxo complex. Thermolysis of the complex results in N-O bond homolysis, leading to the formation of an iron(III) oxo intermediate. The oxo intermediate is active in oxygen atom transfer reactions and can be trapped by the triphenylmethyl radical to give the iron(II) alkoxo complex PhB(MesIm)(3)Fe(OCPh(3)).  相似文献   

20.
The reactions of zerovalent iron with water and carbon tetrachloride are of interest for environmental remediation of contaminated water and soil. Atom-dropping experiments have shown that the reactions of iron atoms with water and CCl(4) may produce HFeOH and FeCl(2), respectively, but these compounds are themselves unreactive toward CCl(4) at the low temperatures under which the atom-dropping experiments were performed. We report a modeling study of these reactions using density functional theory, ab initio Hartree-Fock and couple-cluster theory, and principles of Marcus-Hush theory to characterize the underlying intrinsic barriers and rationalize the experimental results. Electron-correlated CCSD(T) calculations (at B3LYP/TZVP optimized structures) show that the transition state for Cl atom transfer from CCl(4) to HFeOH arises from crossing of electronic states in which the configuration of Fe changes from a quintet high spin state in the Fe(II) reactant to a sextet high spin state in the Fe(III) products. The crossing point is 23.8 kcal/mol above a long-range precursor complex that is 2.1 kcal/mol more stable than the separated reactants. The electronic structure changes in these Cl atom transfer reactions involve unpairing of d electrons in Fe(II) and their recoupling with Cl-C σ bond electrons. These processes can be conveniently described by invoking the self-exchange reactions HFeOH/HFeClOH, FeCl(2)/FeCl(3), and CCl(4)/(?)CCl(3) for which we determined the energy barriers to be 15.5, 13.1, 18.6 kcal/mol, respectively. For the cross reaction FeCl(2)/CCl(4), we estimated a barrier of 16.6 kcal/mol relative to the separated reactants and 21.1 kcal/mol from the precursor complex. The magnitudes of the reaction barriers are consistent with reports of the absence of products in the atom-dropping experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号