首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flow above the free end of a surface-mounted finite-height cylinder was studied in a low-speed wind tunnel using particle image velocimetry (PIV). Velocity measurements were made in vertical and horizontal measurement planes above the free end of finite cylinders of aspect ratios AR = 9, 7, 5 and 3, at a Reynolds number of Re = 4.2 × 104. The relative thickness of the boundary layer on the ground plane was δ/D = 1.7. Flow separating from the leading edge formed a prominent recirculation zone on the free-end surface. The legs of the mean arch vortex contained within the recirculation zone terminate on the free-end surface on either side of the centreline. Separated flow from the leading edge attaches onto the upper surface of the cylinder along a prominent attachment line. Local separation downstream of the leading edge is also induced by the reverse flow and arch vortex circulation within the recirculation zone. As the cylinder aspect ratio is lowered from AR = 9 to AR = 3, the thickness of the recirculation zone increases, the arch vortex centre moves downstream and higher above the free-end surface, the attachment position moves downstream, and the termination points of the arch vortex move upstream. A lowering of the aspect ratio therefore results in accentuated curvature of the arch vortex line. Changes in aspect ratio also influence the vorticity generation in the near-wake region and the shape of the attachment line.  相似文献   

2.
This paper investigates the secondary vortex flows over an oscillating low-pressure turbine blade using a direct numerical simulation (DNS) method. The unsteady flow governing equations over the oscillating blade are discretized and solved using a spectral/hp element method. The method employs high-degree piecewise polynomial basis functions which results in a very high-order finite element approach. The results show that the blade oscillation can significantly influence the transitional flow structure and the wake profile. It was observed that the separation point over vibrating T106A blades was delayed 4.71% compared to the stationary one at Re = 51,800. Moreover, in the oscillating case, the separated shear layers roll up, break down and shed from the trailing edge. However, the blade vibration imposes additional flow disturbances on the suction surface of the blade before leaving from the trailing edge. Momentum thickness calculations revealed that after flow separation point, the momentum thickness grows rapidly which is due to the inverse flow gradients which generate vortex flows in this area. It was concluded that the additional vortex generations due to the blade vibrations cause higher momentum thickness increment compared to the conventional stationary LPT blade.  相似文献   

3.
This work aims at investigating the mechanisms of separation and the transition to turbulence in the separated shear-layer of aerodynamic profiles, while at the same time to gain insight into coherent structures formed in the separated zone at low-to-moderate Reynolds numbers. To do this, direct numerical simulations of the flow past a NACA0012 airfoil at Reynolds numbers Re = 50,000 (based on the free-stream velocity and the airfoil chord) and angles of attack AOA = 9.25° and AOA = 12° have been carried out. At low-to-moderate Reynolds numbers, NACA0012 exhibits a combination of leading-edge/trailing-edge stall which causes the massive separation of the flow on the suction side of the airfoil. The initially laminar shear layer undergoes transition to turbulence and vortices formed are shed forming a von Kármán like vortex street in the airfoil wake. The main characteristics of this flow together with its main features, including power spectra of a set of selected monitoring probes at different positions on the suction side and in the wake of the airfoil are provided and discussed in detail.  相似文献   

4.
The flow around surface-mounted, finite-height square prisms at a Reynolds number of Re = 4.2 × 104 was investigated experimentally in a low-speed wind tunnel using particle image velocimetry. The thickness of the boundary layer on the ground plane relative to the width of the prism was δ/D = 1.5. Four prism aspect ratios were tested, AR = 9, 7, 5, and 3, to study how the aspect ratio influences the flow field close to the prism. Upstream of the prism, lowering the aspect ratio from AR = 9 to AR = 3 causes the stagnation point on the upstream face to move closer to the free end, but there is no influence on the location and strength of the horseshoe vortex. Lowering the aspect ratio from AR = 9 to AR = 3 causes the cross-stream vortices in the upper and lower halves of the wake to move downstream and upstream, respectively; the latter vortex is absent for AR = 3, suggesting this prism sits below the critical aspect ratio. Above the free end of the prism, within the region of separated flow, lowering the aspect ratio from AR = 9 to AR = 3 shifts the location of the cross-stream vortex farther downstream. For the prism of AR = 3, reverse flow above the free end is stronger yet more unsteady compared to the more slender prisms, while the streamwise edge vortices are smaller and weaker.  相似文献   

5.
A computational study of heat transfer from rectangular cylinders is carried out. Rectangular cylinders are distinguished based on the ratio of the length of streamwise face to the height of the cross-stream face (side ratio, R). The simulations were performed to understand the heat transfer in a flow field comprising separation, reattachment, vortex shedding and stagnation. The Partially-Averaged Navier–Stokes (PANS) modeling approach is used to solve the turbulent flow physics associated and the wall resolve approach is used for the near wall treatment because of the flow separation involved. The simulations were performed using a finite volume based opensource software, OpenFOAM, at Reynolds number (Re) = 22,000 for rectangular cylinder at constant temperature kept in an air stream. Two critical side ratios were obtained, R = 0.62 and 3.0. At R = 0.62, the maximum value of the drag coefficient (Cd) = 2.681 was observed which gradually reduced by 54% at R = 4.0. The base pressure coefficient and global Nusselt number also attained the maximum value at R = 0.62 and from R = 2.5 to 3.0 a sharp discontinuous increase by 140% in the Strouhal number was observed. At R = 0.62, it was observed that the separated flow reattaches at the trailing edge after rolling over the side face and therefore increases the overall Nusselt number. The phase averaging was also performed to analyze the unsteady behavior of heat transfer.  相似文献   

6.
The present paper shows the results of an experimental investigation into the unsteadiness of coolant ejection at the trailing edge of a highly loaded nozzle vane cascade. The trailing edge cooling scheme features a pressure side cutback with film cooling slots, stiffened by evenly spaced ribs in an inline configuration. Cooling air is also ejected through two rows of cylindrical holes placed upstream of the cutback. Tests were performed with a low inlet turbulence intensity level (Tu1 = 1.6%), changing the cascade operating conditions from low speed (M2is = 0.2) up to high subsonic regime (M2is = 0.6), and with coolant to main stream mass flow ratio varied within the 0.5–2.0% range. Particle Image Velocimetry (PIV) and flow visualizations were used to investigate the unsteady mixing process taking place between coolant and main flow downstream of the cutback, up to the trailing edge. For all the tested conditions, the results show the presence of large coherent structures, which presence is still evident up to the trailing edge. Their shape and direction of rotation change with injection conditions, as a function of coolant to mainstream velocity ratio, strongly influencing the thermal protection capability of the injected coolant flow. The Mach number increase is only responsible for a positioning of such vortical structures closer to the wall, while the Strouhal number almost remains unchanged.  相似文献   

7.
The generation of control moments without moving control surfaces is of great practical importance. Following a successful flight demonstration of creating roll motion without ailerons using differential, lift oriented, flow control the current study is a first step towards generating yawing motion via differential flow controlled drag.A wind tunnel study was conducted on a 21% thick Glauert type airfoil. The upper surface flow is partially separated from the two-thirds chord location and downstream on this airfoil at all incidence angles. An array of mass-less Piezo-fluidic actuators, located at x/c = 0.65, are capable of fully reattaching the flow in a gradual, controlled manner. The actuators are individually operated such that the boundary layer could be controlled in a 3D fashion.Several concepts for creating yaw motion without moving control surface are examined. The ultimate goal is to generate the same lift on both wings, while decreasing the drag on one wing and increasing the drag on the other, therefore creating a yawing moment. Decreased drag is created by effective part-span separation delay while increased drag can be created by enhanced generation of vortex shedding or by highly localized 3D actuation.Detailed measurements of 3D surface pressure distributions and wake data with three velocity and streamwise vorticity components are presented and discussed along with surface flow visualization images. The data provide evidence that yawing moments can be generated with AFC.  相似文献   

8.
This paper presents the results of an ongoing investigation into transient pressure pulses using Shannon entropy. Pressure fluctuations (produced by gas–solid two-phase flow during fluidized dense-phase conveying) are recorded by pressure transducers installed at strategic locations along a pipeline. This work validates previous work on identifying the flow mode from pressure signals (Mittal, Mallick, & Wypych, 2014). Two different powders, namely fly ash (median particle diameter 45 μm, particle density 1950 kg/m3, loosely poured bulk density 950 kg/m3) and cement (median particle diameter 15 μm, particle density 3060 kg/m3, loosely poured bulk density 1070 kg/m3), are conveyed through different pipelines (51 mm I.D. × 70 m length and 63 mm I.D. × 24 m length). The transient nature of pressure fluctuations (instead of steady-state behavior) is considered in investigating flow characteristics. Shannon entropy is found to increase along straight pipe sections for both solids and both pipelines. However, Shannon entropy decreases after a bend. A comparison of Shannon entropy among different ranges of superficial air velocity reveals that high Shannon entropy corresponds to very low velocities (i.e. 3–5 m/s) and very high velocities (i.e. 11–14 m/s) while low Shannon entropy corresponds to mid-range velocities (i.e. 6–8 m/s).  相似文献   

9.
The Large Eddy Simulation model was introduced to study the micro spray characteristics under ultra-high injection pressure (>220 MPa). EFS8400 spray test platform was set up to verify the accuracy of the numerical model. The mechanisms of micro spray characteristics were studied intensively under different injection pressures (180 MPa, 240 MPa) and nozzle diameters (0.1 mm, 0.16 mm). The results indicated that the micro turbulence vortex structures can be captured, especially in the liquid spray core area. Large Eddy Simulation model combined with the small grid size of 0.25 mm show a huge advantage in studying the micro spray characteristics under ultra-high injection pressure; The turbulence vorticity and spray velocity for injection pressure of 240 MPa are more intensive than that of 180 MPa, and also the ultra-high injection pressure can contribute to strong turbulence disturbance between spray and surrounding air, which is helpful to improve the quality of spray; The spray velocity field extended wider for the diameter of 0.16 mm, and also the values of velocity in the spray center is higher than that of the diameter of 0.1 mm; The entrainment vortex appeared at the edge of the large velocity gradient between spray and surrounding air, and the higher velocity gradient for ultra-high injection pressure (240 MPa) between the spray and air is easier to increase the generation of entrainment vortex in the downstream of the spray, which can significantly increase the quality of spray and atomization.  相似文献   

10.
A numerical study of the alteration of a square cylinder wake using a detached downstream thin flat plate is presented. The wake is generated by a uniform flow of Reynolds number 150 based on the side length of the cylinder, D. The sensitivity of the near wake structure to the downstream position of the plate is investigated by varying the gap distance (G) along the wake centerline in the range 0  G  7D for a constant plate length of L = D. A critical gap distance is observed to occur at Gc  2.3D that indicates the existence of two flow regimes. Regime I is characterised by vortex formation occurring downstream of the gap while for regime II, formation occurs within the gap. By varying the plate length and gap distance, a condition is found where significant unsteady total lift reduction can occur. The root mean square lift reduction is limited by an unsteady stall process on the plate.  相似文献   

11.
Flow regimes and mixing performance in a T-type micromixer at high Reynolds numbers were studied by numerical solution of the Navier–Stokes equations. The Reynolds number was varied from 1 to 1000. The cross section of the mixing channel was 100 μm × 200 μm, and its length was 1400 μm. The transverse inlet channels were symmetric about the mixing channel, and their cross-section was 100 μm × 100 μm, and the total length was 800 μm. Five different flow regimes were identified: (i) stationary vortex-free flow (Re < 5); (ii) stationary symmetric vortex flow with two horseshoe vortices (5 < Re < 150); (iii) stationary asymmetric vortex flow (150 < Re < 240); (iv) non-stationary periodic flow (240 < Re < 400); and (v) stochastic flow (Re > 400). Maximum mixing efficiency is obtained for nonstationary asymmetric vortex flow. In this case, an S-shaped vortex structure is formed in the flow field. The effect of the slip conditions on the flow pattern and mixing efficiency is studied. The slip length varied from 1 to 70 μm in the calculations. It was shown that the mixing can be controlled by hydrophobic coating.  相似文献   

12.
This paper deals with the investigation of flow field due to clap and fling mechanism using immersed boundary coupled with lattice Boltzmann method. The lattice Boltzmann method (LBM), an alternative to Navier–Stokes solver, is used because of its simplicity and computational efficiency in solving complex moving boundary problems. Benchmark problems are simulated to validate the code, which is then used for simulating flow over two elliptic wing of aspect ratio 5 performing clap and fling flapping motion for different flow parameters such as Reynolds number (Re=75, 100, 150), advance ratio (J=10E−3.10E−2,0.2) and frequency (f=0.05 Hz, 0.25 Hz). Numerical simulation is able to capture typical low Reynolds number unsteady phenomena such as, ׳wake vortex wing interaction׳, ׳Kramer effect׳ and ׳delayed stall׳. The results are both qualitatively and quantitatively consistent with experimental observation. The parametric study involving different combinations of Re, f and J depict distinctly different aerodynamic performances providing physical insights into the flow physics. It is observed that a combination of low f, low J and high Re flow results in better aerodynamic performance. Pronounced lift enhancement via leading edge vortices are obtained in unsteady regime (J<1) compared to quasi-steady regime (J>1). The role of leading edge vortices in enhancing lift are investigated by studying the size and strength of these vortices for different flow conditions. For a given Re, the magnitude of maximum lift coefficient decreases with increasing f irrespective of the value of J; while the same is enhanced with the increasing Re.  相似文献   

13.
The transmission of unsteady pressure and shear stress, generated by a turbulent boundary layer in water, through a viscoelastic layer backed by a rigid plate is investigated. Analytical models are used to estimate the unsteady pressure and shear stress from 10 to 1000 Hz for a flat plate boundary layer with zero pressure gradient. Additionally, models for the transfer of the unsteady pressures and shear stress through the viscoelastic layer are developed. The models are used to predict the unsteady pressure fluctuations, or flow noise, which would be seen by a finite size sensor embedded under the elastomer layer. The unsteady pressure levels are found to be 20 dB greater than the unsteady shear stress levels across all frequency ranges computed, in agreement with recent measurements. The unsteady pressure transfer functions have a peak at the shear wavenumber and are larger than the shear stress transfer magnitudes from 10 to 50 Hz. The unsteady shear stress transfer functions have a peak at the acoustic wavenumber and are larger than the pressure transfer magnitudes from 50 to 1000 Hz. Over the frequency range examined, the unsteady pressures were found to be the dominant contributor to the sensor flow noise due to the considerably larger magnitude of the unsteady pressures on the top of the viscoelastic layer.  相似文献   

14.
In-line flow segregators based on axial induction of swirling flow have important applications in chemical, process and petroleum production industries. In the later, the segregation of gas bubbles and/or water droplets dispersed into viscous oil by swirling pipe flow may be beneficial by either providing a pre-separation mechanism (bubble and/or drop coalescer) or, in the case of water-in-oil dispersions, by causing a water-lubricated flow pattern to establish in the pipe (friction reduction). Works addressing these applications are rare in the literature. In this paper, the features and capabilities of swirling pipe flow axially induced by a vane-type swirl generator were investigated both numerically and experimentally. The numerical analysis has been carried out using a commercial CFD package for axial Reynolds numbers less than 2000. Pressure drop, tangential and axial velocity components as well as swirl intensity along a 5 cm i.d. size and 3 m long pipe were computed. Single phase flow experiments have been performed using a water–glycerin solution of 54 mPa s viscosity and 1210 kg/m3 density as working fluid. The numerical predictions of the pressure drop were compared with the experimental data and agreement could be observed within the range of experimental conditions. The experiments confirmed that swirl flow leads to much higher friction factors compared with theoretical values for non-swirl (i.e. purely axial) flow. Furthermore, the addition of a conical trailing edge reduces vortex breakdown. Visualization of the two-phase swirling flow pattern was achieved by adding different amounts of air to the water–glycerin solution upstream the swirl generator.  相似文献   

15.
An experimental study in an open-ended vertical channel is carried out in order to describe the fluid dynamics and heat transfer of transient free convection inside a vertical rib-roughened channel asymmetrically heated at various uniform heat fluxes (650, 700, and 780 W/m2) corresponding to various modified Rayleigh numbers (3.65 × 106, 3.93 × 106 and 4.4 × 106). Two ribs are symmetrically located on each wall. The investigations focused more specifically on the influence of the ribs positions inside the channel and the modified Rayleigh number (Ra*) both in steady-state regime and during the transitional phase occurring just after the start of the heating on the flow structure and the heat transfer performance. The results showed the appearance of large-scale flow instabilities which will develop and propagate until the development of the pocket-like vortex (reversed flow). Also, the formation and breakup of recirculation eddies, vortex banishment, besides that a separation and shifting of the boundary layer from one wall to another are identified. The best position of the ribs for heat extraction depends on the magnitude of the Rayleigh number. In that case, the top position is the optimal position for the small and the moderate modified Rayleigh numbers.  相似文献   

16.
We consider two-dimensional, inertia-free, flow of a constant-viscosity viscoelastic fluid obeying the FENE-CR equation past a cylinder placed symmetrically in a channel, with a blockage ratio of 0.5. Through numerical simulations we show that the flow becomes unsteady when the Deborah number (using the usual definition) is greater than De  1.3, for an extensibility parameter of the model of L2 = 144. The transition from steady to unsteady flow is characterised by a small pulsating recirculation zone of size approximately equal to 0.15 cylinder radius attached to the downstream face of the cylinder. There is also a rise in drag coefficient, which shows a sinusoidal variation with time. The results suggest a possible triggering mechanism leading to the steady three-dimensional Gortler-type vortical structures, which have been observed in experiments of the flow of a viscoelastic fluid around cylinders. The results reveal that the reason for failure of the search for steady numerical solutions at relatively high Deborah numbers is that the two-dimensional flow separates and eventually becomes unsteady. For a lower extensibility parameter, L2 = 100, a similar recirculation is formed given rise to a small standing eddy behind the cylinder which becomes unsteady and pulsates in time for Deborah numbers larger than De  4.0–4.5.  相似文献   

17.
The present work explores unusual flow behavior of entangled fluids in an abrupt contraction flow device. Fluorescent imaging was carried out on four different entangled DNA solutions with concentrations ranging from 0.1 to 1.0% (with a wide range of entanglements per chain Z = 7–55). For weakly entangled solutions (Z < 30), vortex flow was dominant at high flow rates. However, for well-entangled DNA solutions (Z  30), unusual time dependant shear banding was observed at the contraction entrance. Upon reducing the slip length by adding sucrose to the well-entangled DNA solution, vortex flow became dominant again. In vortex flow, most DNA chains remained coiled at the corner in regular recirculation. However, when jerky-shear-banding flow developed, significant stable stretching of DNA chains occurred at the center-line, with quasi-periodic switching between stretching and recoil at the corner.  相似文献   

18.
Proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) were used to extract the coherent structures in turbulent cavity flows. The spatiotemporal representation of the modes was achieved by performing the circular convolution of a change of basis on the data sequence, wherein the transformation function was extracted from the POD or DMD. The spatiotemporal representation of the modes provided significant insight into the evolutionary behavior of the structures. Self-sustained oscillations arise in turbulent cavity flows due to unsteady separation at the leading edge. The turbulent cavity flow at ReD = 12,000 and a length to depth ratio L/D = 2 was analyzed. The dynamic modes extracted from the data clarified the presence of self-sustained oscillations. The spatiotemporal representation of the POD and DMD modes that caused self-sustained oscillations revealed the prevalent dynamics and evolutionary behavior of the coherent structures from their formation at the leading edge to their impingement at the trailing edge. A local minimum in the mode amplitude representing the energy contributions to the flow was observed upon the impingement of coherent structure at the trailing edge. The modal energy associated with the periodic formation of organized coherent structures followed by their dissipation upon impingement revealed the oscillatory behavior over time.  相似文献   

19.
We have studied the flow of thermodynamically ideal solutions of a high molecular weight (Mw = 6.9 MDa) atactic polystyrene in the θ solvent dioctyl phthalate (aPS in DOP) through a micro-fabricated 8:1 planar abrupt contraction geometry. The channel is much deeper than most micro-scale geometries, providing an aspect ratio of 16:1 and a good approximation to 2D flow in the narrow channel. The solutions span a range of concentration 0.03 wt.% < c < 0.6 wt.%, encompassing the dilute to semi-dilute regimes and providing a range of fluid viscosities and relaxation times such that we achieve a range of Weissenberg numbers (8.7 < Wi < 1562) and Reynolds numbers (0.07 < Re < 11.2), giving elasticity numbers between 31 < El < 295. We study the flow using a combination of micro-particle image velocimetry (μ-PIV) to characterize the flow field, pressure measurements to evaluate the non-Newtonian viscosity, and birefringence measurements to assess macromolecular strain. Flow field observations reveal three broad flow regimes characterized by Newtonian-like flow, unstable flow and vortex growth in the upstream salient corners. Transitions between the flow regimes scale with Wi, independent of El, indicating the dominance of elastic over inertial effects in all the fluids. Transitions in the flow field are also reflected by transitions in the relative viscosity (determined from the pressure drop) and the macromolecular strain (determined from birefringence measurements). The strain through the 8:1 contraction saturates at a value of ~4–5 at high Wi. The results of these experiments broaden the limited set of literature on flow through micro-fluidic planar contractions and should be of significant value for optimizing lab-on-a-chip design and for comparison with modeling studies with elasticity dominated fluids.  相似文献   

20.
The performance of wind turbines is significantly affected by the atmospheric condition of their operating environment. Because rain is a common phenomenon in many parts of the world, understanding its effect on the performance of wind turbines provides valuable information in determining the site for a new wind farm. We developed a multiphase computational fluid dynamics (CFD) model to estimate the effect of rain by simulating the actual physical process of rain droplets forming a water layer over the blades by coupling the Lagrangian Discrete Phase Model (DPM) and the Eulerian Volume of Fluid (VOF) models. We applied our model to a wind-turbine blade airfoil and studied the effect of rain for different rainfall rates in addition to the effect of surface tension and surface property of the airfoil. We observed that, at low rainfall rates, the performance of the airfoil is highly sensitive to the rainfall rate. However, if the rainfall rate is high enough to immerse most of the airfoil surface under water, a further increase in the rainfall rate does not have a substantial effect on the performance of the airfoil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号