首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
In the present study, olive oil was used for the preparation of three-component high internal phase emulsions with oil volume fraction of more than 0.77 stabilized by palm-based polyoxyethylene lauryl ether for the first time. These emulsions were investigated on their morphology, structural properties, stability, and hydration efficacy. Droplet size distribution observed from the optical micrographs was in agreement with the light scattering results, which suggested that droplet size was influenced by oil phase and surfactant concentrations. Rheological results exhibiting flow curves cross-over implied structural build-up that gave rise to high stability which was supported by stable three-month storage at an elevated temperature. The hydration efficacy of the emulsion was examined in vivo using a corneometer.  相似文献   

2.
The preparation of double water-in-oil-in-water (W/O/W) emulsions containing xanthan gum (XG) in the absence of hydrophilic surfactant was investigated. The emulsions were prepared by the two-step emulsification process. The stability of these systems was evaluated through the evaluation of physicochemical and rheological properties. Microscopic observations in combination with particle size analysis were also performed. The obtained results show that it is possible to prepare stable double emulsions with a single polysaccharide by using the indirect process. The stability depends on the viscosity of the continuous phase and hence the concentration of XG. The apparent viscosity of the emulsions increased with the increase of XG concentration. Particle size analysis shows that the droplet sizes are directly related to XG concentration.  相似文献   

3.
4.
Rheological behavior of two crude oils and their surfactant-stabilized emulsions with initial droplet sizes ranging from 0.5 to 75 µm were investigated at various temperatures under steady and dynamic shear testing conditions. In order to evaluate the morphology and Stability of emulsions, microscopic analysis was carried out over three months and average diameter and size distribution of dispersed droplets were determined. The water content and surfactant concentration ranged from 10 to 60% vol/vol and 0.1 to 10% wt/vol, respectively. The results indicated that the rheological properties and the physical structure and stability of emulsions were significantly influenced by the water content and surfactant concentration. The crude oils behaved as Newtonian fluids over a wide range of shear rates, whereas the emulsions behaved as non-Newtonian fluids, indicating shear-thinning effects over the entire range of shear rates. The viscosity, storage modulus and degree of elasticity were found to be significantly increased with the increase in water content and surfactant concentration. The maximum viscosity was observed at the point close to the phase inversion point where the emulsion system changes from water-in-oil emulsion to oil-in-water emulsion. The results also indicated that the rheological properties of crude oils and their emulsions are significantly temperature-dependent.  相似文献   

5.
冯雪艳  马贵平  姚立 《化学通报》2016,79(10):891-896
具有较高孔隙率和较高比表面积的多孔聚合物材料在能源、化工、生物和功能性材料等领域应用广泛。目前越来越多的研究是以高内相乳液为模板来制备多孔聚合物材料,其中高内相乳液的稳定对多孔聚合物材料的制备十分重要。本文主要介绍了近年来发展的多种用于高内相乳液滴稳定的表面活性剂,以及以高内相乳液为模板制备得到的多孔聚合物材料在多个领域中的应用。  相似文献   

6.
Mixtures of polyols (glycerol, propylene glycol, glucose) and water were emulsified in oil (isopropyl myristate (IPM), medium chain triglycerides (MCT), long chain triglycerides (LCT), and d-limonene) under elevated pressures and homogenization, in the presence of polyglycerol polyricinoleate (PGPR), glycerol monooleate (GMO), and their mixture as emulsifiers to form water-in-oil emulsions. High pressures was applied to: a) the emulsion, b) the aqueous phase and c) the oil phase in the presence of the emulsifiers (PGPR and GMO). Under optimal pressure (2000 atms) applied to the ready-made emulsion or to the aqueous phase prior to its emulsification, and with optimal composition (30wt% polyol in the aqueous phase and MCT as the oil phase), the aqueous droplets were stable for months and submicron in size (0.1 μm). Moreover, due to equalization of the oil and the aqueous phases refractive indices, the emulsions were almost transparent. Pressure and polyols have synergistic effects on the emulsions stability. During preparation, surface tensions and interfacial tensions were dramatically reduced until an optimal water/polyols ratio was achieved, which allows rupturing of the droplets to submicronal size (0.1 μm) without recoalescence and fast diffusion to the interface. These unique W/O emulsions are suitable for preparing W/O/W double emulsions for sustained release of active materials for food applications.  相似文献   

7.
Precipitation of naphthenate salts is normally a problem in the processing of acidic crude oils. In this study, the goal was to find suitable methods to investigate the interfacial reaction between tetraacid and calcium under emulsified conditions. Two different systems have been studied depending on composition and applied shear. The influence of inhibitors has been investigated and the same inhibitor was found to be the most effective one regardless of the system. Depletion of tetraacid in the oil phase was analyzed with UV-vis and HPLC. Interfacial area and droplet size in the emulsions were measured with fluorescence microscope and pulse-field gradient NMR. Since this reaction takes place over the interface, the investigation clearly documents, the importance of the total interfacial area of the emulsified system.  相似文献   

8.
采用共沉淀法制备了3种形态的MgAl双金属氢氧化物颗粒的水分散体系, 并以其为乳化剂制备了Pickering乳液. 比较了3种颗粒的分散体系及其稳定的Pickering乳液的性质. X射线衍射(XRD)和透射电子显微镜(TEM)表征结果表明, 低结晶度的颗粒以形状不规则、 结构疏松、 表面粗糙的絮状体形式分散于水中, 且颗粒尺寸随高速搅拌分散时间的延长而减小; 而良好结晶的颗粒以形状规则、 结构致密、 表面平滑的六角片存在于水中. Zeta电位测试表明, 3种颗粒在水中均带正电荷, NaCl可降低颗粒的Zeta电位而使其发生絮凝, 但良好结晶颗粒的分散体系在更高NaCl浓度时才出现明显沉淀. 分别采用3种双金属氢氧化物颗粒/NaCl水分散体系制备了水包油(O/W)型Pickering乳液, 并比较了乳液的稳定性. 结果表明, NaCl的引入在一定程度上可提高3类乳液的稳定性; 良好结晶颗粒稳定乳液的能力强于低结晶度的颗粒; 对于低结晶度颗粒, 大颗粒稳定乳液的能力比小颗粒更强.  相似文献   

9.
《Analytical letters》2012,45(9):1728-1737
A method for the determination of rutin was developed from in an O/W emulsion with decyl oleate and Ceteareth-20 containing Ginkgo biloba L., Hedera helix L., and Thymus vulgaris L. extracts. Total quantification of rutin was performed by determination in the aqueous and oily phase. Rutin was extracted from the oily phase by ultrasonication for 30 min at 37°C in methanol and resolved by liquid chromatography on a column containing a Gemini 3 µ C18 110A stationary phase.

Chromatography was carried out using gradient elution with the mobile phase composed of water:formic acid and water:acetonitrile:formic acid, which was varied from 100:0.1 to 50:50:0.1 (v/v/v) over 80 min and delivered at a flow rate of 0.3 ml/min. The analytes were quantified using a UV-VIS absorption spectrometer at a wavelength of 254 nm and a single quadrupole mass spectrometer employing an ESI interface operated in the positive ion mode with single ion monitoring at m/z = 609.14.

Finally, a simple and rapid method for the extraction and determination of rutin in hydrophilic and lipophilic phases of an O/W emulsion with good precision and acceptable recovery was developed. This method might be of special importance for the analysis of rutin and other flavonoids in O/W or W/O emulsion matrices.  相似文献   

10.
Alcohol-free microemulsions were formulated using mixtures of extended surfactant (C12-14-PO14-EO2SO4Na), sodium dodecyl benzene sulfonic acid and cationic hydrotropes with equal amounts of water and diesel. The cationic hydrotropes had short hydrocarbon or propylene oxide chain. The formulation included sodium carbonate to convert naphthenic acids in diesel to soaps. The phase behavior at ambient temperature of oil-free mixtures as a function of NaCl concentration was investigated. Visual inspection as well as cross polarizers were used to detect anisotropy. The microemulsion fish phase diagram and solubilization ratios for diesel and brine in the middle phases were determined. The minimum surfactant concentration needed to initiate middle phase formation was 0.10 wt%.

Salinity scans revealed that optimal salinity can be adjusted according to the hydrophilic/lipophilic nature of the hydrotrope used. Interfacial tension measurements using a spinning drop tensiometer showed a minimum value of 0.0015 mN/m between middle phase microemulsion and excess brine and a value of 0.032 mN/m between diesel and brine.  相似文献   

11.
In this work, we have tested various formulations in order to get emulsions containing pure water, Tunisian olive oil, Tunisian clays, and an ammonium salt. Two different types of clays: smectite and kaolinite and the cethyltrimethylamonium bromide (CTAB) were tested. CTAB is used as surfactant and a compound modifying the clays properties. The amount of CTAB being fixed at 0.66 w/w, the proportions of clays were varied from 0 to 9% for each of the following proportions of water: 10, 20, 30%. To the aqueous phase obtained by mixing two separate aqueous phases: water + CTAB and water + clay, the oil was added drop by drop, the agitation being maintained at 5000 rpm. The obtained mixtures were analyzed by Differential Scanning Calorimetry (DSC), optical microscopy and bottle tests. An optimized formulation containing water (30%), smectite clay (5.3%) and CTAB (0.66%) was found to give W/O emulsions which kinetic stability is greater than 75 days regarding coalescence and greater than 700 hours regarding sedimentation.  相似文献   

12.
Novel oil‐in‐water (O/W) emulsions are prepared which are stabilised by a cationic surfactant in combination with similarly charged alumina nanoparticles at concentrations as low as 10?5 m and 10?4 wt %, respectively. The surfactant molecules adsorb at the oil‐water interface to reduce the interfacial tension and endow droplets with charge ensuring electrical repulsion between them, whereas the charged particles are dispersed in the aqueous films between droplets retaining thick lamellae, reducing water drainage and hindering flocculation and coalescence of droplets. This stabilization mechanism is universal as it occurs with different oils (alkanes, aromatic hydrocarbons and triglycerides) and in mixtures of anionic surfactant and negatively charged nanoparticles. Further, such emulsions can be switched between stable and unstable by addition of an equimolar amount of oppositely charged surfactant which forms ion pairs with the original surfactant destroying the repulsion between droplets.  相似文献   

13.
Semi‐equilibrium dialysis (SED) and micellar enhanced ultra filtration (MEUF) methods are used to determine the extent of solubilization of water‐insoluble compounds by surfactant and polyelectrolyte. In this study, solubilization of ortho‐, meta‐ and para‐phthalic acids (OPA, MPA and TPA), 1,4‐ and 2,6‐naphthalene dicarboxylic acids (1,4‐NDCA and 2,6‐NDCA) into hexadecylpyridinium chloride (CPC), and the behavior of these acids to bind to the polyelectrolyte ionizable groups were investigated at 25 °C, using SED and MEUF methods. Polydimethyldiallylammonium chloride (PDMDAAC) is used in this study. It was found that the solubilization of organic acids decreases with increasing the solute mole fractions in micelles. Also, the best separation occurs at the lowest concentration of the phthalate ions and high concentrations of either CPC or PDMDAAC. The results support the idea of charge interaction between the anionic dicarboxylate groups and cationic surfactant or polyelectrolyte. The results also show that the presence of a second phenyl ring does not greatly affect the solubilization behavior of the acids.  相似文献   

14.
Surfactants have been used for decades in the food industry for the preparation of lipid-based emulsified food stuffs. They play two main roles in the emulsification processes: first they decrease the interfacial tension between the oil and water, facilitating droplet deformation and rupture; second, they reduce droplet coalescence by forming steric barriers. However, addition of surfactants to binary oil-water mixtures also brings up the formation of three-dimensional interfacial layers, surrounding each emulsion droplet, that significantly alter chemical reactivity. This is the case, for instance, in the inhibition reaction between antioxidants and the lipid radicals formed in the course of the spontaneous oxidation reaction of unsaturated lipids, which are commonly employed in the preparation of food-grade emulsions. The rate of the inhibition reaction depends on the effective concentrations of antioxidants, which are mostly controlled by the amount of surfactant employed in the preparation of the emulsion. In this work, we analyze the effects of the surfactant Tween 20 on the oxidative stability and on the effective concentrations of two model antioxidants derived from cinnamic acid, determining their interfacial concentrations in the intact emulsions to avoid disrupting the existing equilibria and biasing results. For this purpose, a recently developed methodology was employed, and experimental results were interpreted on the grounds of a pseudophase kinetic model.  相似文献   

15.
The investigation of the effect of multilayer membranes on the stability of flaxseed oil-in-water (o/w) emulsions was the main goal of this study. The primary emulsion was prepared by homogenizing the oil phase (10 wt%) with an aqueous sodium caseinate solution (90 wt% and a pH 6.8) using a high-pressure microfluidizer. This emulsion was mixed with a pectin solution to form a secondary emulsion at a pH 6.8 and then adjusted to a pH to 3 for the adsorption of anionic pectin molecules on the surface of the cationic droplet surfaces. The pH effect on the physical stability of the emulsions was evaluated by measuring the mean particle diameter, ζ-potential, creaming index, and visualization of the microstructure. Also, the oxidative stability was determined by monitoring the lipid hydroperoxides and thiobarbituric acid-reactive substances (TBARs) at 55°C. The results of this study indicate that a multilayer structure had a positive effect on the improvement of the physical and oxidative stability of the conventional emulsions under certain pH conditions and limited storage period.  相似文献   

16.
17.
Curcumin is one of the most studied chemo-preventive agents, which may cause suppression, retardation, or inversion of carcinogenesis. But its application is currently limited because of its poor water-solubility and bioaccessibility. A curcumin O/W emulsion was prepared by high-pressure homogenization, using triglyceride monolaurate as an emulsifier and medium chain triglycerides (MCT) as the oil phase. The effects of emulsifiers, emulsifier concentration, oil type, oil-to-water ratio, and homogenization pressure and processing cycles on the physical stability and droplet size distribution of curcumin-encapsulated O/W emulsions were evaluated in this study. The results showed that the mean droplet size of the O/W emulsions remained remarkably stable during 60 days of storage under both light and dark conditions. Curcumin retentions in O/W emulsions after 60 days of storage under light and dark conditions were 97.9% and 81.6%, respectively. In addition, during the simulated gastrointestinal digestion process, the mean droplet size of the O/W emulsions increased from 260 nm to 2743 nm after incubation with simulated gastric fluid (SGF) for 24 h, while the mean droplet size remained unchanged after incubation with simulated intestinal fluid (SIF). The results displayed negligible changes in curcumin content during incubation with simulated gastrointestinal fluids, indicating that effective protection of curcumin was achieved by encapsulation in the O/W emulsion. It is expected that curcumin will acquire high bioaccessibility and bioavailability when the O/W emulsion is to be used in clinical applications.  相似文献   

18.
31P nuclear magnetic resonance (NMR) spectroscopic measurement with trimethylphosphine oxide (TMPO) was applied to evaluate the Lewis acid catalysis of various metal triflates in water. The original 31P NMR chemical shift and line width of TMPO is changed by the direct interaction of TMPO molecules with the Lewis acid sites of metal triflates. [Sc(OTf)3] and [In(OTf)3] had larger changes in 31P chemical shift and line width by formation of the Lewis acid–TMPO complex than other metal triflates. It originates from the strong interaction between the Lewis acid and TMPO, which results in higher stability of [Sc(OTf)3TMPO] and [In(OTf)3TMPO] complexes than other metal triflate–TMPO complexes. The catalytic activities of [Sc(OTf)3] and [In(OTf)3] for Lewis acid‐catalyzed reactions with carbonyl compounds in water were far superior to the other metal triflates, which indicates that the high stability of metal triflate–carbonyl compound complexes cause high catalytic performance for these reactions. Density functional theory (DFT) calculation suggests that low LUMO levels of [Sc(OTf)3] and [In(OTf)3] would be responsible for the formation of stable coordination intermediate with nucleophilic reactant in water.  相似文献   

19.
选用二氧化硅纳米粒子(H30)和聚(乳酸-羟基乙酸)共聚物(PLGA)为复合稳定剂, 成功制备出内相体积分数高达90%的高内相Pickering 乳液. 对照实验表明: 单独用H30粒子作稳定剂, 内相体积分数上限为75%; 单独用PLGA 作稳定剂, 发生严重相分离, 不能形成乳液. 无机纳米粒子与聚合物之间的协同作用在制备高内相乳液的过程中起到了关键作用. 因此, 使用无机粒子和聚合物作为混合稳定剂制备高内相乳液是一种新型而有效的方法.  相似文献   

20.
Abstract

Polyfunctional phosphonates CHP*2–CHP*2, CH2P*–CHP*2, CHR′P*–CHP*2 (P* = P(O)(OR)2; R = Me, Et, iPr, iOct; R′ = Ph, Mes, CH2P*) were synthesized from chlorinated ethylenes by reaction with sodium dialkyl phosphites (RO)2PONa in THF using convenient one-pot procedures. Some corresponding acids (R = H) of general type HnL and salts were described. Molecular structures were deduced from NMR and X-Ray studies. Noncanonical rotamers in overcrowded molecules are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号