首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
We report on a nonenzymatic method for the determination of glucose using an electrode covered with graphene nanosheets (GNs) modified with Pt-Pd nanocubes (PtPdNCs). The latter were prepared on GNs by using N,N-dimethylformamide as a bifunctional solvent for the reduction of both metallic precursors and graphene oxide, and for confining the growth of PtPdNCs on the surface. The modified electrode displays strong and sensitive current response to the electrooxidation of glucose, notably at pH 7. The sensitivities increase in the order of Pt1Pd5NCs< Pt1Pd3NCs< Pt5Pd1NCs< Pt3Pd1NCs< Pt1Pd1NCs. At an applied potential of +0.25 V, the electrode responds linearly (R?=?0.9987) to glucose in up to 24.5 mM concentration, with a sensitivity of 1.4 μA cm?2 M?1. The sensor is not poisoned by chloride, and not interfered by ascorbic acid, uric acid and p-acetamidophenol under normal physiological conditions. The modified electrode also displays a wide linear range, good stability and fast amperometric response, thereby indicating the potential of the bimetallic materials for nonenzymatic sensing of glucose.
Figure
nonenzymatic electrochemical method was developed for glucose determination using an electrode modified with PtPd nanocubes/graphene nanosheets (PtPdNCs/GNs). The new material shows a good performance in the sensing of glucose, thus is promising for the future development of nonenzymatic glucose sensors.  相似文献   

3.
4.
Mei  He  Wu  Wenqin  Yu  Beibei  Li  Yibin  Wu  Huimin  Wang  Shengfu  Xia  Qinghua 《Mikrochimica acta》2015,182(11):1869-1875

Co@Pt core-shell nanoparticles (NPs) were synthetized by a two-step reductive method using carbon (Vulcan XC-72) as a solid support. The NPs were characterized by X-ray diffraction, field emission gun scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy. Their electrochemical performance was evaluated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry, and these showed that the Co@Pt NPs display an electrocatalytic activity towards the oxidation of glucose that is much better than that of plain Pt NPs. Under optimized conditions and at pH 7.0, the oxidation current of glucose at a working potential of −50 mV (vs. SCE) is linearly related to its concentration in the 1.0 to 30 mM range, and the detection limit is 0.3 mM (S/N = 3). It therefore covers the clinical range. The sensor also exhibits excellent stability and repeatability.

Co@Pt core-shell nanoparticles (NPs) display an electrocatalytic activity towards the oxidation of glucose that is much better than that of plain Pt NPs. The oxidation current for glucose is linearly related to its concentration in the 1.0 to 30 mM range, and the detection limit is 0.3 mM (S/N =3).

  相似文献   

5.
Zhao  Li  Wu  Genghuang  Cai  Zhixiong  Zhao  Tingting  Yao  Qiuhong  Chen  Xi 《Mikrochimica acta》2015,182(11):2055-2060

We describe an anodic stripping voltammetric (ASV) method for glucose sensing that widely expands the typical amperometric i-t response of glucose sensors. The electrode is based on a working electrode consisting of a glassy carbon electrode modified with Pt-Pd nanoparticles (NPs; in an atomic ratio of 3:1) on a reduced graphene oxide (rGO) support. The material was prepared via the spontaneous redox reaction between rGO, PdCl4 2− and PtCl4 2− without any additional reductant or surfactant. Unlike known Pt-based sensors, the use of Pt3Pd NPs results in an ultrasensitive ASV approach for sensing glucose even at near-neutral pH values. If operated at a working voltage as low as 0.06 V (vs. SCE), the modified electrode can detect glucose in the 2 nM to 300 μM concentration range. The lowest detectable concentration is 2 nM which is much lower than the LODs obtained with other amperometric i-t type sensing approaches, most of which have LODs at a μM level. The sensor is not interfered by the presence of 0.1 M of NaCl.

We describe an anodic stripping voltammetric method for glucose sensing that widely expands the typical amperometric i-t response of glucose sensors (2 nM to 300 μM). The electrode is based on a glassy carbon electrode modified with Pt-Pd nanoparticles on a reduced graphene oxide (rGO) support.

  相似文献   

6.
7.
8.
9.
We report on a nonenzymatic glucose sensor based on a glassy carbon electrode that was electrochemically modified with a nanocomposite prepared from nickel hydroxide and graphene. Scanning electron microscopy revealed that the nickel hydroxide in the nanocomposite was present in the form of a nanostructure of three-dimensional spheres that were assembled by many densely arranged nanosheets. The electrocatalytic activity of the electrode toward the oxidation of glucose was investigated by chronoamperometry. The current response was linearly related to the glucose concentration in the range from 1 to 10?μM, with a sensitivity of 494?μA?mM–1?cm–2 and a correlation coefficient of 0.9990, and a second range (from 10 to 1000?μM with a sensitivity of 328?μA?mM–1?cm–2 and a correlation coefficient of 0.9990). The detection limit was 0.6?μM at a signal-to-noise ratio of 3, and the response time was as short as 2?s.
Figure
As seen in the scanning electron microscopic image, three-dimension Ni(OH)2 spheres was decorated on the surface of graphene. Due to its excellent electrochemical properties and large specific surface area, the addition of graphene obviously promoted the current response to glucose at the Ni(OH)2 modified electrode.  相似文献   

10.
A novel glucose biosensor is presented as that based on a glassy carbon electrode modified with hollow gold nanoparticles (HGNs) and glucose oxidase. The sensor exhibits a better differential pulse voltammetric response towards glucose than the one based on conventional gold nanoparticles of the same size. This is attributed to the good biological conductivity and biocompatibility of HGNs. Under the optimal conditions, the sensor displays a linear range from 2.0?×?10?6 to 4.6?×?10?5?M of glucose, with a detection limit of 1.6?×?10?6?M (S/N?=?3). Good reproducibility, stability and no interference make this biosensor applicable to the determination of glucose in samples such as sports drinks.
Figure
A novel glucose biosensor was prepared based on glucose oxidase, hollow gold nanoparticles and chitosan modified glassy carbon electrode. The electrode showed a good response for the glucose. The sensor has been verified by the determination of glucose in sport drink  相似文献   

11.
An electrochemical sensor was developed and tested for detection of L-tyrosine in the presence of epinephrine by surface modification of a glassy carbon electrode (GCE) with Nafion and cerium dioxide nanoparticles. Fabrication parameters of a surfactant-assisted precipitation method were optimized to produce 2–3 nm CeO2 nanoparticles with very high surface-to-volume ratio. The resulting nanocrystals were characterized structurally and morphologically by X-ray diffractometery (XRD), scanning and high resolution transmission electron microscopy (SEM and HR-TEM). The nanopowder is sonochemically dispersed in a Nafion solution which is then used to modify the surface of a GCE electrode. The electrochemical activity of L-tyrosine and epinephrine was investigated using both a Nafion-CeO2 coated and a bare GCE. The modified electrode exhibits a significant electrochemical oxidation effect of L-tyrosine in a 0.2 M Britton-Robinson (B-R) buffer solution of pH 2. The electro-oxidation peak current increases linearly with the L-tyrosine concentration in the molar concentration range of 2 to 160 μM. By employing differential pulse voltammetry (DPV) for simultaneous measurements, we detected two reproducible peaks for L-tyrosine and epinephrine in the same solution with a peak separation of about 443 mV. The detection limit of the sensor (signal to noise ratio of 3) for L-tyrosine is ~90 nM and the sensitivity is 0.20 μA μM?1, while for epinephrine these values are ~60 nM and 0.19 μA μM?1. The sensor exhibited excellent selectivity, sensitivity, reproducibility and stability as well as a very good recovery time in real human blood serum samples.
Simultaneous electrochemical determination of L-tyrosine and epinephrine in blood plasma with Nafion-CeO2/GCE modified electrode showing a 443 mV peak-to-peak potential difference between species oxidation peak currents.  相似文献   

12.

An electrochemical sensor was developed and tested for detection of L-tyrosine in the presence of epinephrine by surface modification of a glassy carbon electrode (GCE) with Nafion and cerium dioxide nanoparticles. Fabrication parameters of a surfactant-assisted precipitation method were optimized to produce 2–3 nm CeO2 nanoparticles with very high surface-to-volume ratio. The resulting nanocrystals were characterized structurally and morphologically by X-ray diffractometery (XRD), scanning and high resolution transmission electron microscopy (SEM and HR-TEM). The nanopowder is sonochemically dispersed in a Nafion solution which is then used to modify the surface of a GCE electrode. The electrochemical activity of L-tyrosine and epinephrine was investigated using both a Nafion-CeO2 coated and a bare GCE. The modified electrode exhibits a significant electrochemical oxidation effect of L-tyrosine in a 0.2 M Britton-Robinson (B-R) buffer solution of pH 2. The electro-oxidation peak current increases linearly with the L-tyrosine concentration in the molar concentration range of 2 to 160 μM. By employing differential pulse voltammetry (DPV) for simultaneous measurements, we detected two reproducible peaks for L-tyrosine and epinephrine in the same solution with a peak separation of about 443 mV. The detection limit of the sensor (signal to noise ratio of 3) for L-tyrosine is ~90 nM and the sensitivity is 0.20 μA μM−1, while for epinephrine these values are ~60 nM and 0.19 μA μM−1. The sensor exhibited excellent selectivity, sensitivity, reproducibility and stability as well as a very good recovery time in real human blood serum samples.

Simultaneous electrochemical determination of L-tyrosine and epinephrine in blood plasma with Nafion-CeO2/GCE modified electrode showing a 443 mV peak-to-peak potential difference between species oxidation peak currents.

  相似文献   

13.
The electrocatalytic oxidation of glucose was investigated on a nickel-basedchemically modified electrode (Ni(II)-curcumin) prepared by electropolymerization of Ni-curcumin complex (curcumin=1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione) in alkaline solution. Reaction kinetic and mechanism were investigated by using cyclic voltammetry (CV) and chronoamperometry (CA) techniques and steady-state polarization measurements. Cyclic voltammetry studies indicated that in the presence of glucose the anodic peak current of surface redox mediator was increased, followed by decrease in the corresponding cathodic current. This indicates that glucose was oxidized at the surface of this modified electrode. The results were explained based on the concept of electrocatalytic reactions that occur in this chemically modified electrode. The diffusion coefficient of glucose and the rate constant of the catalytic oxidation of glucose were found to be 6.7×10−6 cm2 s−1 and 6.5×103 M−1 s−1, respectively. It has shown that by using the Ni-curcumin modified electrode, glucose can be determined with good response and low detection limit.  相似文献   

14.
Nickel and nickel–copper alloy modified glassy carbon electrodes (GC/Ni and GC/NiCu) prepared by galvanostatic deposition were examined for their redox processes and electro-catalytic activities towards the oxidation of glucose in alkaline solutions. The methods of cyclic voltammetry (CV) and chronoamperometry (CA) were employed. The cyclic voltammogram of NiCu alloy demonstrates the formation of β/β crystallographic forms of the nickel oxyhydroxide under prolonged repetitive potential cycling in alkaline solution. It is also observed that the overpotential for O2 evolution increases for NiCu alloy modified electrode. In CV studies, NiCu alloy modified electrode yields significantly higher activity for glucose oxidation compared to Ni. The oxidation of glucose was concluded to be catalyzed through mediated electron transfer across the nickel hydroxide layer comprising of nickel ions of various valence states. The anodic peak currents show linear dependency with the square root of scan rate. This behavior is the characteristic of a diffusion-controlled process. Under the CA regime, the reaction followed a Cottrellian behavior, and the diffusion coefficient of glucose was found to be 1 × 10−5 cm2 s−1, in agreement with diffusion coefficient obtained in CV studies.  相似文献   

15.
A glassy carbon electrode (GCE) was modified with nickel(II) hydroxide nanoparticles and a film of molybdenum sulfide. The nanocomposite was prepared by two-step electrodeposition. Scanning electron microscopy reveals that the nanoparticles are uniformly deposited on the film. Cyclic voltammetry and chronoamperometry indicate that this modified GCE displays a remarkable electrocatalytic activity towards nonenzymatic oxidation of glucose. Response is linear in the 10–1,300 μM concentration range (R 2 ?=?0.9987), the detection limit is very low (5.8 μM), response is rapid (< 2 s), and selectivity over ascorbic acid, dopamine, uric acid, fructose and galactose is very good.
Figure
An efficient nonenzymatic glucose sensor based on Ni(OH)2/MoSx nanocomposite modified glassy carbon electrode has been fabricated via a two-step electrodeposition approach. The resulting nonenzymatic sensor exhibits excellent properties toward glucose detection, such as low detection limit, fast response and noticeable selectivity.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号