首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pharmaceutical analysis based on chromatographic separation is an important part of studies aimed at developing routine quality analysis of drugs. High-performance liquid chromatography (HPLC) is one of the main analytical techniques recommended for drug analysis. Although it meets many criteria vital for analysis, it is time-consuming and uses a relatively high amount of organic solvents compared to other analytical techniques. Recently, Ultra-high-performance liquid chromatography (UHPLC) has been frequently proposed as an alternative to HPLC, which means introducing an environment-friendly approach to drug analysis achieved by reducing the consumption of solvents. It also offers greater chromatographic resolution and higher sensitivity as well as requiring less time due to faster analysis. This review focuses on the basics of UHPLC, compares that technique with HPLC and discusses the possibilities of applying UHPLC for the analysis of different pharmaceuticals and biopharmaceuticals.  相似文献   

2.
Abstract

This paper presents both rapid analytical and preparative high performance liquid chromatographic (HPLC) techniques for separating liquid-fuel type materials into saturates, aromatics, resins, and asphaltenes (SARA). The preparative method, an adaptation of a technique developed by Jewell, et. al. (1, 4), significantly decreases analysis time. The analytical technique utilizes HPLC to achieve the same separations in less time.  相似文献   

3.
Micellar liquid chromatography (MLC) is an analytical technique belonging to the wide range of reversed-phase liquid chromatographic (RP-LC) separation techniques. MLC with the use of surfactant solutions above its critical micellar concentration (CMC) and the addition of organic modifiers is currently an important analytical tool with still growing theoretical considerations and practical applications in pharmaceutical analysis of drugs and other biologically active compounds. The use of MLC as an alternative, relatively much faster in comparison to conventional chromatographic separation techniques has several advantages, especially as being suitable for screening pharmaceutical analysis. The analytical data received from MLC analysis are considered a useful source of information to predict passive drug absorption, drug transport and other pharmacokinetics and physicochemical measures of pharmaceutical substances.  相似文献   

4.
Abstract

In recent years, a rapid progress can be observed both in column and planar liquid chromatographic techniques. In the field of liquid column chromatography the most spectaular achievement was the development of high-performance liquid chromatographic/HPLC/ systems by means of several special instruments and sorbents/1, 2/. As regards planar techniques, the most significant break-through is the development of highperformance thin-layer chromatography/HPTLC//3/ based on the application of fine-particle sorbents. Both techniques proved to be very useful in many fields of chemical analysis, although the use of the latter is more restricted, mainly to micro chromatographic studies.  相似文献   

5.
Abstract

The correlation of the results of five thin-layer chromatographic techniques and their transfer to high performance liquid chromatography are reported. The data obtained indicate that high performance thin-layer chromatographic results are faithfully reproduced by high performance liquid chromatography. Although plates were not activated, and mixed solvents were used, no major differences were observed between thin layer and high performance liquid chromatography.  相似文献   

6.
In-process control (IPC) is an important task during chemical syntheses in pharmaceutical industry. Despite the fact that each chemical reaction is unique, the most common analytical technique used for IPC analysis is high performance liquid chromatography (HPLC). Today, the so-called “Quality by Design” (QbD) principle is often being applied rather than “Trial and Error” approach for HPLC method development. The QbD approach requires only for a very few experimental measurements to find the appropriate stationary phase and optimal chromatographic conditions such as the composition of mobile phase, gradient steepness or time (tG), temperature (T), and mobile phase pH. In this study, the applicability of a multifactorial liquid chromatographic optimization software was studied in an extended knowledge space. Using state-of-the-art ultra-high performance liquid chromatography (UHPLC), the analysis time can significantly be shortened. By using UHPLC, it is possible to analyse the composition of the reaction mixture within few minutes. In this work, a mixture of route of synthesis of apixaban was analysed on short narrow bore column (50 × 2.1 mm, packed with sub-2 µm particles) resulting in short analysis time. The aim of the study was to cover a relatively narrow range of method parameters (tG, T, pH) in order to find a robust working point (zone). The results of the virtual (modeled) robustness testing were systematically compared to experimental measurements and Design of Experiments (DoE) based predictions.  相似文献   

7.
《Analytical letters》2012,45(11):901-912
Abstract

A quantitative method for the analysis of 5-hydroxytryptamine in biological material is described. The method is based on high performance liquid chromatography (HPLC) with electrochemical detection. A simple purification on a weakly acidic ion exchange resin prior to the analysis gives quite clean samples and permits concentration of diluted samples. The chromatographic separation is performed on a reverse phase column with organic modifier added to an aqueous eluent. With this analytical system 25 pg of 5-hydroxytryptamine can be detected.  相似文献   

8.
The analysis of impurities and degradation products in pharmaceutical preparations are usually performed by chromatographic techniques such as high-performance liquid chromatography (HPLC). This approach demands extensive analysis time, mostly due to extraction and separation phases. These steps must be carried out in samples in order to adapt them to the requirements of the analytical method of choice. In the present contribution, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was employed to quantify an important degradation product in atorvastatin calcium 80 mg tablets: the atorvastatin lactone. Through the standard of the impurity, it was possible to perform quantitative analysis directly on the drug tablet, using a quick and novel approach, suitable for quality control processes in the pharmaceutical industry.  相似文献   

9.
A general scheme is set up for the estimation of the impurity profile of bulk drug substances by the complex use of chromatographic, spectroscopic and hyphenated techniques. Several examples are presented as illustrations to the scheme from the authors' laboratory involving the use of chromatographic methods such as thin-layer-(TLC), gas-(GC), analytical and preparative high-performance liquid chromatography (HPLC), spectroscopic methods such as mass spectrometry (MS) and NMR spectroscopy as well as hyphenated techniques (HPLC/diode-array UV, GC/MS and HPLC/MS). In addition to summarizing earlier work, new examples are also presented: identification of an impurity (propyl 4-[diethylcarbamoyl(methoxy)]-3-methoxy phenylglyoxylate, II) in propanidid (I) and two unsaturated impurities in allylstrenol (VII) by GC/MS and HPLC/diode-array UV as well as estimation of the impurity profile of mazipredone (III) by HPLC/MS and HPLC/diode-array UV.  相似文献   

10.
《Analytical letters》2012,45(2):231-258
Abstract

Interest in hair analysis as an alternativ or complementary approach to urinalysis for drug abuse detection has grown in recent years. Hair analysis can be particularly advantageous for drugs and their enantiomers.

More than hundred pharmaceuticals, drugs of abuse agents are reported to be detectable in human and animal hair. This article reviews the aalysis of drugs and drug metabolites by chromatographic procedures, incuding the pretreatment steps, and the xtraction methods. Tihe eneral tendency in the last years, to highly sophisticated techiques gas chromatography–mass spectrometry (GC–MS–NCI), high pressure liquid chromatography–mass spectrometry (HPLC–MS), gas chromatography–mass spectrometry–mass spectrometry (GC–MS–MS) well illustrates this constant fight for sensitivity.  相似文献   

11.
This paper demonstrates the analysis of levetiracetam, a new chiral antiepileptic drug, at ng/mL levels using an ultra-high-performance liquid chromatography (UHPLC)-photodiode absorbance (PDA) method. Three different sample preparation methods, liquid-liquid extraction with Extrelut, solid phase extraction (SPE) with Oasis HLB and Oasis MAX SPE cartridges, and protein precipitation with organic solvents were carried out. The last preparatory method is the simplest and provides the best recoveries: between 97.1% and 100.4% with RSD value below 5%. The column for separation is BEH C18 column (1.7 μm particle size and 100 × 2.1 mm i.d.) and acetonitrile-phosphate buffer (pH = 6.6; 0.01 M) (10/90 v/v) is the mobile phase. The results obtained are compared to analysis conducted by the HPLC method. The UHPLC method was validated in the range of 2-100 μg/mL levetiracetam concentration (R(2) = 0.9997). LOD and LOQ are 10 ng/mL and 33 ng/mL, respectively. The developed UHPLC method was applied to plasma samples of patient with epilepsy.  相似文献   

12.
Summary: The synthesis and characterization of polyolefins continues to be one of the most important areas for academic and industrial polymer research. One consequence of the development of new “tailor-made” polyolefins is the need for new and improved analytical techniques for the analysis of polyolefins with respect to molar mass and chemical composition distribution. The present article briefly reviews different new and relevant chromatographic techniques for polyolefin analysis. For the fast analysis of the chemical composition distribution of polyolefins a new high-temperature gradient high-performance liquid chromatography (HPLC) system has been introduced. The efficiency of this system for the separation of various olefin copolymers is demonstrated. The correlation between elution volume and chemical composition can be accessed by on-line coupling of high temperature HPLC with FTIR spectroscopy. For the elucidation of the chemical composition as a function of molar mass high-temperature size exclusion chromatography and 1H-NMR spectroscopy can be coupled. It is shown that the on-line NMR analysis of chromatographic fractions yields information on microstructure and chemical composition in addition to molar mass distribution.  相似文献   

13.
Post Column derivatisation (PCD) coupled with high performance liquid chromatography or ultra-high performance liquid chromatography is a powerful tool in the modern analytical laboratory, or at least it should be. One drawback with PCD techniques is the extra post-column dead volume due to reaction coils used to enable adequate reaction time and the mixing of reagents which causes peak broadening, hence a loss of separation power. This loss of efficiency is counter-productive to modern HPLC technologies, -such as UHPLC. We reviewed 87 PCD methods published from 2009 to 2014. We restricted our review to methods published between 2009 and 2014, because we were interested in the uptake of PCD methods in UHPLC environments. Our review focused on a range of system parameters including: column dimensions, stationary phase and particle size, as well as the geometry of the reaction loop. The most commonly used column in the methods investigated was not in fact a modern UHPLC version with sub-2-micron, (or even sub-3-micron) particles, but rather, work-house columns, such as, 250 × 4.6 mm i.d. columns packed with 5 μm C18 particles. Reaction loops were varied, even within the same type of analysis, but the majority of methods employed loop systems with volumes greater than 500 μL.  相似文献   

14.
Abstract

High-performance liquid chromatographic (HPLC) separation of steroidal hormones and cephalosporin antibiotics was investigated by adsorption chromatography and reversed-phase chromatography, respectively.

Prior to the HPLC separation of these pharmaceuticals, silica gel thin-layer adsorption chromatography of steroidal hormones and reversed-phase thin-layer partition chromatography of cephalosporin antibiotics with chemically bonded dimethylsilyl silica gel were performed in order to obtain suitable HPLC separation systems.

In the separation of steroidal hormones, the same binary mobile phase ratios of TLC did not give satisfactory results in HPLC. For the sharp separation in HPLC, solvent strength in the binary solvent mixture used for TLC had to be decreased.

The difference in solvent strength for efficient separation between TLC and HPLC might be attributed to the fact that in HPLC the solvent elution power acts in an isocratic manner while in TLC it acts in a gradient manner.

On the other hand, a correlation of mobility between TLC and HPLC separation for cephalosporin antibiotics was obtained, and the possibility of direct transfer of chromatographic systems from TLC to HPLC for separation of these antibiotics was confirmed.  相似文献   

15.
16.
As a biological affinity chromatographic method, cell membrane chromatography (CMC) using a silica stationary phase covered with specific cell membrane has been used in screening active components. The innovation of this work is that the bioactive cell membrane and the chromatographic packing are mixed and absorbed for the first time to form the pre-column. The pre-column was placed in front of a C18 column to create dynamic CMC online high-performance liquid chromatography (HPLC) system. The retention behavior and dynamic changes of pharmaceuticals were studied for this system. The results indicate that the retention time of the drug was increased and the symmetry factor reached the analytical level after the addition of the dynamic cell membrane pre-column. Therefore, the dynamic CMC coupled with HPLC system may be a potentially rapid and efficient drug analysis approach for the interaction of drug molecule and receptor on red blood cell membranes.  相似文献   

17.
《Analytical letters》2012,45(17):2637-2647
The advent of monolithic columns has facilitated the combination of chromatographic techniques with nonseparation flow techniques by virtue of the low overpressure introduced by them. Thus far, these combinations have provided excellent results derived from the high selectivity of liquid chromatography and ease of sample handling in nonseparation flow techniques. The joint use of multisyringe flow injection analysis and monolithic columns has provided multisyringe chromatography (MSC).

Simultaneous spectrophotometric determination of ascorbic acid, nicotinic acid, nicotinamide, pyridoxine hydrochloride, thiamine hydrochloride, and riboflavin in commercial drinks using a MSC method, is described in this contribution as an inexpensive alternative to classical HPLC. The MSC method provides baseline separation of all these compounds with resolutions values greater than 2, except for B1 and B6 with resolution of 1,2.

A ChromolithTM Flash RP-18e (50 mm × 4.6 mm) column, a multisyringe burette provided with two 10 mL high-precision bidirectional syringes and an 8-port multiposition valve were used for a dual isocratic chromatographic separation in our study.  相似文献   

18.
The evolution of chromatography has led to the reduction in the size of the packing materials used to fabricate HPLC columns. The increase in the backpressure required has led to this technique being referred to as ultrahigh-pressure liquid chromatography (UHPLC) when the column backpressure exceeds 10000 psi (approximately 700 bar). Until recently, columns packed with sub-2-microm materials have generally fitted into two classes; either short (less than 5 cm) columns designed for use on traditional HPLC systems at pressures less than 5000 psi (350 bar), or capillary columns (inner diameters less than 100 microm). By using packing materials with diameters <2 microm to fabricate UHPLC columns, there is an increase in efficiency and a decrease in the analysis time that are directly proportional to the size of the packing material. In order to realize and exploit the increase in efficiency, however, the columns must maintain lengths typically associated with analytical columns (15-25 cm). We have packed 1 mm diameter, 150 mm in length columns with 1.5 microm packing material, and evaluated their performance in UHPLC. The pressure required to achieve optimum linear velocities in plots of plate height versus linear velocity was in the vicinity of 1104 bar (16000 psi). The 1.5 microm particle-packed column was compared with the more traditional 150 mm long analytical columns packed with 3 microm materials. This column showed an efficiency that was approximately twice that observed with the 3 microm packed column and a concomitant reduction in the analysis time, theoretically predicted.  相似文献   

19.
Abstract

In addition to quantitative analytical data, high pressure liquid chromatographic (HPLC) methods may be designed to collect correlation data. In particular, chromatographic retention data may be used to characterize the lipophilic nature of the solute and therefore may be used as a parameter in quantitative structure activity relationship (QSAR) which relate drug structure and pharmacological activity. Alternatively, chromatographic retention may be used as a parameter in the prediction of physical chemical properties of solute solubility, pKa, partition coefficient). Finally, it may be used merely for prediction of retention character of a similar compound in the present or related chromatographic system. of these studies prior to 1980 have been reviewed (1, 2).  相似文献   

20.
Ultra high pressure liquid chromatography (UHPLC) systems operating at very high pressures and using sub-2 microm packing columns have allowed a remarkable decrease in analysis time and increase in peak capacity, sensitivity, and reproducibility compared to conventional HPLC. This technology has rapidly been widely accepted by the analytical community and is being gradually applied to various fields of plant analysis such as QC, profiling and fingerprinting, dereplication, and metabolomics. For many applications, an important improvement of the overall performances has been reported. In this review, the basic principles of UHPLC are summarized, and practical information on the type of columns used and phase chemistry available is provided. An overview of the latest applications to natural product analysis in complex mixtures is given, and the potential and limitations as well as some new trends in the development of UHPLC are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号