首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 960 毫秒
1.
The turbulent properties of the fiber suspension in a turbulent round jet are numerically simulated and visualized, and some of the results are compared with the experimental data. The effects of the Reynolds number, fiber volume fraction, and aspect ratio are analyzed. The results show that the fiber injection in the flow has a delay effect on the streamwise velocity decay along the jet axis, and such an effect becomes more obvious with the increases in the fiber volume fraction and aspect ratio and the decrease in the Reynolds number. The flow with fibers shows an increase in the streamwise velocity along the radial direction, and the increase magnitude is directly proportional to the fiber volume fraction and aspect ratio and inversely proportional to the Reynolds number. The presence of fibers makes the turbulent kinetic energy and Reynolds stress increase, and the extent increases with the fiber volume fraction, Reynolds number, and fiber aspect ratio.  相似文献   

2.
A time-resolved particle tracking velocimetry (PTV) system and a shape projection imaging system were used to investigate the turbulence modifications by bubbles in a downward bubbly flow. Two bubble sizes and three mean void fractions were tested at a Reynolds number of about 20,000. The strong modifications in the mean velocity, turbulent kinetic energy (TKE) budget, and velocity spectra are observed in the central region of the pipe that has a high local void fraction. In particular, kinetic energy production decreased, whereas the TKE dissipation rate increased. This suggests that the transfer of energy due to bubbles has a very large effect on the TKE budget. Moreover, velocity spectra reveal that the presence of bubbles modifies the length scales of turbulent eddies, which contain, transfer, and dissipate energy.  相似文献   

3.
A high Reynolds number flat plate turbulent boundary layer is investigated in a wind-tunnel experiment. The flow is subjected to an adverse pressure gradient which is strong enough to generate a weak separation bubble. This experimental study attempts to shed some new light on separation control by means of streamwise vortices with emphasize on the change in the boundary layer turbulence structure. In the present case, counter-rotating and initially non-equidistant streamwise vortices become and remain equidistant and confined within the boundary layer, contradictory to the prediction by inviscid theory. The viscous diffusion cause the vortices to grow, the swirling velocity component to decrease and the boundary layer to develop towards a two-dimensional state. At the position of the eliminated separation bubble the following changes in the turbulence structure were observed. The anisotropy state in the near-wall region is unchanged, which indicates that it is determined by the presence of the wall rather than the large scale vortices. However, the turbulence in the outer part of the boundary layer becomes overall more isotropic due to an increased wall-normal mixing and a significantly decreased production of streamwise fluctuations. The turbulent kinetic energy is decreased as a consequence of the latter. Despite the complete change in mean flow, the spatial turbulence structure and the anisotropy state, the process of transfer of turbulent kinetic energy to the spanwise fluctuating component seems to be unchanged. Local regions of anisotropy are strongly connected to maxima in the turbulent production. For example, at spanwise positions in between those of symmetry, the spanwise gradient of the streamwise velocity cause significant production of turbulent fluctuations. Transport of turbulence in the spanwise direction occurs in the same direction as the rotation of the vortices.  相似文献   

4.
An experimental study has been undertaken to investigate the effect of Reynolds number on the near-field region of circular turbulent air jets. Measurements were made using a two-component Laser Doppler Anemometer, and included mean velocity, turbulence intensity, skewness factor, flatness factors and power spectrum. Measurements were taken up to 10 nozzle exit diameter in the downstream direction for different exit Reynolds numbers in the range of 1400 to 20000. The Reynolds number was found to have a strong effect on the jet flow behavior in the near-field region; the centerline velocity decays faster (decay constant = 6.11 for Re = 19400, = 1.35 for Re 1430) and the potential core gets shorter with decreasing Reynolds number. Profile measurements of the skewness and flatness factors indicate that the jet flow becomes more intermittent with decreasing Reynolds number. Power spectrum measurements of the streamwise fluctuating velocities reflects the high energy content of the high Reynolds number jet. It also reveals that there is greater energy at the higher frequencies with increasing Reynolds number.  相似文献   

5.
We perform direct numerical simulation of three‐dimensional turbulent flows in a rectangular channel, with a lattice Boltzmann method, efficiently implemented on heavily parallel general purpose graphical processor units. After validating the method for a single fluid, for standard boundary layer problems, we study changes in mean and turbulent properties of particle‐laden flows, as a function of particle size and concentration. The problem of physical interest for this application is the effect of water droplets on the turbulent properties of a high‐speed air flow, near a solid surface. To do so, we use a Lagrangian tracking approach for a large number of rigid spherical point particles, whose motion is forced by drag forces caused by the fluid flow; particle effects on the latter are in turn represented by distributed volume forces in the lattice Boltzmann method. Results suggest that, while mean flow properties are only slightly affected, unless a very large concentration of particles is used, the turbulent vortices present near the boundary are significantly damped and broken down by the turbulent motion of the heavy particles, and both turbulent Reynolds stresses and the production of turbulent kinetic energy are decreased because of the particle effects. We also find that the streamwise component of turbulent velocity fluctuations is increased, while the spanwise and wall‐normal components are decreased, as compared with the single fluid channel case. Additionally, the streamwise velocity of the carrier (air) phase is slightly reduced in the logarithmic boundary layer near the solid walls. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Cetyltrimethyl ammonium chloride (CTAC) surfactant additives, because of their long-life characteristics, can be used as promising drag-reducers in district heating and cooling systems. In the present study we performed both numerical and experimental tests for a 75 ppm CTAC surfactant drag-reducing channel flow. A two-component PIV system was used to measure the instantaneous streamwise and wall-normal velocity components. A Giesekus constitutive equation was adopted to model the extra stress due to the surfactant additives, with the constitutive parameters being determined by well-fitting apparent shear viscosities, as measured by an Advanced Rheometric Expansion System (ARES) rheometer. In the numerical study, we connected the realistic rheological properties with the drag-reduction rate. This is different from previous numerical studies in which the model parameters were set artificially. By performing consistent comparisons between numerical and experimental results, we have obtained an insight into the mechanism of the additive-induced drag-reduction phenomena.

Our simulation showed that the addition of surfactant additives introduces several changes in turbulent flow characteristics: (1) In the viscous sublayer, the mean velocity gradient becomes gentler due to the viscoelastic forces introduced by the additives. The buffer layer becomes expanded and the slope of the velocity profile in the logarithmic layer increases. (2) The locations where the streamwise velocity fluctuation and Reynolds shear stress attain their maximum value shifted from the wall region to the bulk flow region. (3) The root-mean-square velocity fluctuations in the wall-normal direction decrease for the drag-reducing flow. (4) The Reynolds shear stress decreases dramatically and the deficit of the Reynolds shear stress is mainly compensated by the viscoelastic shear stress. (5) The turbulent production becomes much smaller and its peak-value position moves toward the bulk flow region. All of these findings agree qualitatively with experimental measurements.

Regarding flow visualization, the violent streamwise vortices in the near wall region become dramatically suppressed, indicating that the additives weaken the ejection and sweeping motion, and thereby inhibit the generation of turbulence. The reduction in turbulence is accomplished by additive-introduced viscoelastic stress. Surfactant additives have dual effects on frictional drag: (1) introduce viscoelastic shear stress, which increases frictional drag; and (2) dampen the turbulent vortical structures, decrease the turbulent shear stress, and then decrease the frictional drag. Since the second effect is greater than the first one, drag-reduction occurs.  相似文献   


7.
In this paper, a direct numerical simulation of particle-laden flow in a flat plate boundary layer is performed, using the Eulerian–Lagrangian point-particle approach. This is, as far as we know, the first simulation of a particle-laden spatially-developing turbulent boundary layer with two-way coupling. A local minimum of the particle number density is observed in the close vicinity of the wall. The present simulation results indicate that the inertial particles displace the quasi-streamwise vortices towards the wall, which, in turn, enhance the mean streamwise fluid velocity. As a result, the skin-friction coefficient is increased whereas the boundary layer integral thicknesses are reduced. The presence of particles augments the streamwise fluctuating velocity in the near-wall region but attenuates it in the outer layer. Nevertheless, the wall-normal and spanwise velocity fluctuations are significantly damped, and so is the Reynolds stress. In addition, the combined effect of a reduced energy production and an increased viscous dissipation leads to the attenuation of the turbulent kinetic energy.  相似文献   

8.
In this paper, direct numerical simulation is performed to investigate a pulsatile flow in a constricted channel to gain physical insights into laminar–turbulent–laminar flow transitions. An in-house computer code is used to conduct numerical simulations based on available high-performance shared memory parallel computing facilities. The Womersley number tested is fixed to 10.5 and the Reynolds number varies from 500 to 2000. The influences of the degree of stenosis and pulsatile conditions on flow transitions and structures are investigated. In the region upstream of the stenosis, the flow pattern is primarily laminar. Immediately after the stenosis, the flow recirculates under an adverse streamwise pressure gradient, and the flow pattern transitions from laminar to turbulent. In the region far downstream of the stenosis, the flow becomes re-laminarised. The physical characteristics of the flow field have been thoroughly analysed in terms of the mean streamwise velocity, turbulence kinetic energy, viscous wall shear stresses, wall pressure and turbulence kinetic energy spectra.  相似文献   

9.
This experimental study investigated the turbulent transport dissimilarity with a modulated turbulence structure in a channel flow of a viscoelastic fluid using simultaneous particle image velocimetry and planar laser-induced fluorescence measurements. An instantaneous dye concentration field with fluctuating velocity vectors showed that mass was transferred by hierarchically large-scale wavy motions with inclination. A co-spectral analysis showed that the spatial phase modulation of the streamwise velocity and dye concentration fluctuations for the wall-normal velocity fluctuation corresponded to the relaxation time. The occurrence of intense dye concentration fluctuation and small streamwise velocity fluctuation in a thin boundary layer caused dissimilar turbulent transport because of the non-zero negative correlation of the streamwise velocity and dye concentration fluctuations for the wall-normal velocity fluctuation only on large scales. This explains the turbulent transport dissimilarity which leads to the zero averaged Reynolds shear stress and non-zero wall-normal turbulent mass flux.  相似文献   

10.
An axisymmetric air jet exhausting from a 22-degree-angle diffuser is investigated experimentally by particle image velocimetry (PIV) and stereo-PIV measurements. Two opposite dielectric barrier discharge (DBD) actuators are placed along the lips of the diffuser in order to force the mixing by a co-flow actuation. The electrohydrodynamic forces generated by both actuators modify and excite the turbulent shear layer at the diffuser jet exit. Primary air jet velocities from 10 to 40 m/s are studied (Reynolds numbers ranging from 3.2 to 12.8 × 104), and baseline and forced flows are compared by analysing streamwise and cross-stream PIV fields. The mixing enhancement in the near field region is characterized by the potential core length, the centreline turbulent kinetic energy (TKE), the integrated value of the TKE over various slices along the jet, the turbulent Reynolds stresses and the vorticity fields. The time-averaged fields demonstrate that an effective increase in mixing is achieved by a forced flow reattachment along the wall of the diffuser at 10 m/s, whereas mixing enhancement is realized by excitation of the coherent structures for a primary velocity of 20 and 30 m/s. The actuation introduces two pairs of contra-rotating vortices above each actuator. These structures entrain the higher speed core fluid toward the ambient air. Unsteady actuations over Strouhal numbers ranging from 0.08 to 1 are also studied. The results suggest that the excitation at a Strouhal number around 0.3 is more effective to enhance the turbulence kinetic energy in the near-field region for primary jet velocity up to 30 m/s.  相似文献   

11.
暖季强降雨对多年冻土南界斜坡路基稳定性影响分析   总被引:2,自引:0,他引:2  
蔡书鹏  杨林  唐川林 《力学学报》2008,40(2):250-254
为阐明表面活性剂水溶液的减阻作用,使用LDV对零压梯度的二维湍流平板边界层中的CTAB 表面活性剂水溶液的湍流特性进行了实验研究. 结果表明:与牛顿流体相比,CTAB水溶液边 界层的粘性底层增厚;主流时均速度分布有被层流化的趋势,对数分布域上移;主流方向速 度湍动强度峰值减小,且远离壁面,在靠近边界层中部,出现第2峰值;垂直于主流方向的 速度湍动强度受到了大幅度抑制,雷诺应力沿着边界层厚度方向几乎为零. 结果说明CTAB 水溶液具有减弱湍流湍动各个成分相关度的作用,从而能够使雷诺应力降低、湍流能量生成 项减小最终降低流体的输送动力.  相似文献   

12.
An experimental investigation of flow structures downstream of a circular cylinder and sphere immersed in a free-stream flow is performed for Re = 5000 and 10,000 using qualitative and quantitative flow visualization techniques. The obtained results are presented in terms of time-averaged velocity vectors, patterns of streamlines, vorticity, Reynolds stress correlations and turbulent kinetic energy distributions. Flow data reveal that the size of wake flow region, the location of singular and double points, the peak values of turbulence quantities, such as Reynolds stress correlations, vorticity fluctuations and turbulent kinetic energy vary as a function of models’ geometry and Reynolds Numbers. The concentration of small scale vortices is more dominant in the wake of the sphere than that of the cylinder. The maximum value of turbulent kinetic energy (TKE) occurs close to the saddle point for the cylinder case while two maximum values of TKE occur along shear layers for the sphere one because of the 3-D flow behavior.  相似文献   

13.
An experimental investigation of flow structures downstream of a circular cylinder and sphere immersed in a free-stream flow is performed for Re = 5000 and 10,000 using qualitative and quantitative flow visualization techniques. The obtained results are presented in terms of time-averaged velocity vectors, patterns of streamlines, vorticity, Reynolds stress correlations and turbulent kinetic energy distributions. Flow data reveal that the size of wake flow region, the location of singular and double points, the peak values of turbulence quantities, such as Reynolds stress correlations, vorticity fluctuations and turbulent kinetic energy vary as a function of models’ geometry and Reynolds Numbers. The concentration of small scale vortices is more dominant in the wake of the sphere than that of the cylinder. The maximum value of turbulent kinetic energy (TKE) occurs close to the saddle point for the cylinder case while two maximum values of TKE occur along shear layers for the sphere one because of the 3-D flow behavior.  相似文献   

14.
Direct numerical simulations of a turbulent Couette-Poiseuille flow with zero-mean-shear at the moving wall (SL-flow) is performed to examine flow features compared to those for a turbulent pure Poiseuille flow (P-flow). Profiles of the streamwise mean velocity, indicator function and ratio of production to dissipation show that the logarithmic region is significantly elongated for the SL-flow compared to that for the P-flow at a similar Reynolds number. In addition, the magnitudes of the Reynolds stresses are found to be larger in both inner and outer layers for the SL-flow than those for the P-flow. The spanwise spectra of the production term in the turbulent kinetic energy equation are examined to provide a structural basis for explaining the statistical behaviors. In addition, because the growth of the energy-containing motions extends to the outer layer further for the SL-flow due to the presence of a positive mean shear throughout the entire wall layer, the self-similar behavior of the energy balance between the production and transport terms with respect to the self-similar wavenumber is found far from the wall. We also find the increase in the number of uniform momentum zones in the SL-flow, revealing the hierarchical distribution of the energy-containing eddies which are composed of multiple uniform momentum zones. These coherent motions lead to the elongation of the logarithmic region for the SL-flow. Finally, investigation of the turbulent energy transfer process in a spectral domain for the SL-flow demonstrates importance of outer layer very-long structures, and these structures attribute to the energy transport process in an entire flow field.  相似文献   

15.
The results of an experimental investigation of the effect of the streamwise pressure gradient in a turbulent boundary layer on the permissible height of the surface roughness of bodies in an incompressible fluid flow are presented. The permissible roughness Reynolds number for which the characteristics of the turbulent boundary layer remain the same as in the case of flow past a smooth surface is determined.  相似文献   

16.
A method of statistical modeling the flow in the boundary-layer transition region is proposed on the basis of experimental data on kinematics and dynamics of turbulent spots (Emmons spots) on a flat plate in an incompressible fluid. This method allows one to determine the intermittency with allowance for overlapping of the spots, the forces on the plate surface, and the flow field in the vicinity of the transition region if the field of the streamwise component of the mean velocity in the developed turbulent boundary layer is known as a function of the Reynolds number. In contrast to multi-parameter models of the transition, this approach makes it possible to avoid the use of physically meaningless parameter values.  相似文献   

17.
Near-wall second-moment closures have revealed a tendency to severely underpredict the strength of the turbulence-generated secondary flow in noncircular ducts. The aim of this study has been to elucidate the reasons for this failure that seems to be present at both high and low Reynolds numbers. Fully developed three-componential turbulent flow inside a straight square duct has been computed with the quasi-linear SSG second-moment closure and near-wall effects were modeled by elliptic relaxation. The results compared favourably with the reference DNS data, except that the strength of the turbulence-induced secondary flows is significantly underpredicted. A close examination of the generation mechanisms of the mean streamwise vorticity revealed that this discrepancy can be attributed to the secondary shear-stress component, the importance of which is generally overlooked. The normal-stress anisotropy was, however, adequately returned by the model and so was the variation of the friction velocity with Reynolds number over a wide Reynolds-number range. The present study supports the view that the wall-function approach should be abandoned in order to retain a physical appealing representation of the generation mechanisms of mean streamwise vorticity along internal corners. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The present paper deals with the experimental analysis of a strong decelerated turbulent boundary layer developed on a flat plate. The aim of the study was to examine the effects of pressure gradient on a non-equilibrium boundary layer while indicating local areas of equilibrium flow. The effect of the Reynolds number on a turbulent boundary layer developed with matching the external pressure gradient conditions was also analysed. The emphasis was on the analysis of mean flow statistics i.e. mean velocity profiles, streamwise Reynolds stress and the effect of large- and small-scale interactions by analysing the skewness factor and energy isocontours maps. The comparative analysis of the external data indicated that the structure of the turbulent boundary layer depends not only on local effects of pressure gradient but also on the upstream history of the flow. For the same condition of pressure gradient, the increased momentum is observed near the wall with the increase of the Reynolds number at the Incipient Detachment, where increased turbulence production is also observed, leading to the failure of the outer scaling methods. Surprisingly, the effect of the Reynolds number decays at the intermittent transitory detachment where similar profiles were observed. The upper inflection point in the mean profile corresponded well with the outer maximum of the Reynolds stress and zero crossing of skewness factor. Position of this point occurs at different locations, depending on the flow history effects. The last observation demonstrates that the inflection points results from large- and small-scale interactions, which led to the increased convection velocity of small scales near the wall.  相似文献   

19.
A magnetic resonance velocimetry (MRV) experimental technique based on magnetic resonance imaging and capable of measuring the turbulent Reynolds stresses in a 3D flow domain is described. Results are presented in backward facing step flow in a square channel with a Reynolds number of 48,000 based on step height and freestream velocity at the step. MRV results are compared to particle image velocimetry (PIV) measurements in the centerplane containing the streamwise and cross-stream axes. MRV and PIV mean velocity measurements show excellent agreement. MRV measurements for Reynolds normal stresses compare to within ±20% of the PIV results while results for the turbulent shear are less accurate.  相似文献   

20.
An experimental study was carried out to investigate the effect of local ultrasonic forcing on a turbulent boundary layer. The ultrasonic forcing system was constructed by adhering six ultrasonic transducers to a flat plate over which water was flowed. In this system, the ultrasonic waves projected into the water by the transducers caused cavitation, giving rise to an enormous number of tiny water-vapor bubbles. Stereoscopic particle image velocimetry (SPIV) was used to probe the flow characteristics. The SPIV results showed that imposition of the ultrasonic forcing caused a substantial increase in the mean wall-normal velocity but a decrease in the mean streamwise velocity. The ultrasonic forcing reduced the skin friction coefficient by up to 60% immediately downstream of the transducers; this effect gradually dissipated with moving downstream. The streamwise turbulence intensity was reduced near the wall but increased away from the wall, whereas the wall-normal turbulence intensity was not much affected near the wall but increased away from the wall. The Reynolds shear stress and the production of turbulent kinetic energy were reduced near the wall. Imposition of the ultrasonic forcing shifted the streamwise vortical structures away from the wall, leading to a reduction in skin friction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号