首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary An elastically supported beam of infinite length, initially at rest, carries a variable concentrated force at a prescribed point A. General expressions are given for the deflection and the bending moment at A (6.3 and 6.4). Three special cases are considered; the first one is defined by =0 for and =K=const. for ; the second one by =0 for 0 > > , given function of for 0 ; the third one applies to problems in which, during the period of impact, itself is an unknown. The results given here may be of use in those railway-engineering problems in which a rail can be considered as a beam of infinite length, and in which the supporting ground has the required properties.  相似文献   

2.
A linearized theory is developed for the derivation of an asymptotic solution of the initial value problem of axisymmetric surface waves in an infinitely deep fluid produced by an arbitrary oscillating pressure distribution. An asymptotic treatment of the problem is presented in detail to obtain the solution for the surface elevation for sufficiently large time. Finally, the main prediction of this analysis for some particular pressure distributions of physical interest is exhibited.Nomenclature R, , Y cylindrical polar coordinates - frequency - g acceleration due to gravity - density of fluid - T time - (R, Y; T) velocity potential - E(R, T) vertical surface elevation - P(R, T) applied surface pressure - r, y nondimensional cylindrical polar coordinates, - p(r, t) nondimensional surface pressure - t nondimensional time, T - (r, y; t) nondimensional velocity potential, - (r, t) nondimensional vertical surface elevation, - (k) Hankel transform of a function p(r) with respect to r - I 1 transient wave integral - I 2 steady state wave integral  相似文献   

3.
Summary A simple and reliable relative method to derive the molecular weight distribution of linear polymers is proposed.It is shown that both the zero-shear viscosity, 0, and the intrinsic viscosity, [], have a logarithmic dependence on the weight average molecular weight, , and the polydispersity, . The coefficients of these relationships can be determined by applying a multiple regression analysis to a series of samples for which andQ are known.By making use of the two established relationships, the determination of andQ for a given polymer sample reduces to the experimental measurement of its 0 and [].An analysis has been performed to estimate to what extent experimental errors on 0 and [] affect the calculated molecular weight distribution.It has been found that only the experimental error on [] contributes heavily to the final error on the polydispersity.
Zusammenfassung Es wird eine einfache und zuverlässige Relativmethode vorgeschlagen, um die Uneinheitlichkeit linearer Polymere abzuleiten.Es wird gezeigt, daß alle beide, Nullschergradient-viskosität 0, und Grenzviskositätszahl [], einfach logarithmisch vom Gewichtsmittel des Molekulargewichts , und vom Polymolekularitätsindex , abhängig sind.Die Koeffizienten dieser Beziehungen können mit statistischer Analyse festgesetzt werden, wenn undQ einer Probenreihe bekannt sind.Mit den zwei vorher festgesetzten Beziehungen besteht die Bestimmung von undQ einer gegebenen Polymersprobe nur aus den experimentellen Massen seiner 0- und []-Werte.Eine Analyse wurde ausgeführt, um die Bedeutung des experimentellen Irrtums über die berechnete Uneinheitlichkeit zu wissen.Es wurde gefunden, daß ein experimenteller Irrtum betreffs [] schwer an endlichem Irrtum der Uneinheitlichkeit teilnimmt.


With 2 figures and 2 tables  相似文献   

4.
The results of a numerical study (using finite differences) of heat transfer in polymer melt flow is presented. The rheological behaviour of the melt is described by a temperature-dependent power-law model. The curved tube wall is assumed to be at constant temperature. Convective and viscous dissipation terms are included in the energy equation. Velocity, temperature and viscosity profiles, Nusselt numbers, bulk temperatures, etc. are presented for a variety of flow conditions. Br — Brinkman number - c specific heat, J/kg K - De — Dean number - E dimensionless apparent viscosity, eq. (14d) - G dimensionless shear rate, eq. (19) - k parameter of the power-law model, °C–1, eq. (7) - mass flow rate, kg/s - m 0 parameter of the power-law model, Pa · s n , eq. (7) - n parameter of the power-law model, eq. (7) - Nu 2r p/ — Nusselt number, eqs. (28,31) - p pressure, Pa - Pe — Péclet number - P(p/)/r c — pressure gradient, Pa/m - dissipated energy, W, eq. (29) - total energy, W, eq. (30) - r radial coordinate, m - r c radius of tube-curvature, m, fig. 1 - r p radius of tube, m, fig. 1 - r t variable, m, eq. (6) - R dimensionless radial coordinate, eq. (14a) - R c dimensionlessr c, eq. (14a) - R t dimensionlessr t, eq. (14a) - t temperature, °C - bulk temperature, °C, eq. (27) - t 0 inlet temperature of the melt, °C - t w tube wall temperature, °C - T dimensionless temperature, eq. (14c) - T w dimensionless tube wall temperature - T dimensionless bulk temperature - u 1 variable, s–1, eq. (4) - u 2 variable, s–1, eq. (5) - U 1 dimensionlessu 1, eq. (18) - U 2 dimensionlessu 2, eq. (18) - v velocity in-direction, m/s - average velocity of the melt, m/s - V dimensionlessv, eq. (14b) - dimensionless , eq. (15) - z r c — centre length of the tube, m - Z dimensionlessz, eq. (14e) - heat transfer coefficient, W/m2 K - shear rate, s–1, eq. (8) - — shear rate, s–1 - apparent viscosity, Pa · s, eq. (7) - 0 — apparent viscosity, Pa · s - angular coordinate, rad, fig. 1 - thermal conductivity, W/m K - melt density, kg/m3 - axial coordinate, rad, fig. 1 - rate of strain tensor, s–1, eq. (8) - (—p) pressure drop, Pa  相似文献   

5.
Summary The effect of viscous heating in a capillary rheometer is analysed for a power-law fluid by means of a perturbation expansion based upon a boundary-layer-core structure. This expansion is found to complement the eigenfunction series solution obtained by earlier investigators. A similar analysis is presented for the work-of-expansion effect. These two thermal effects are superimposed together with a third perturbation effect due to the pressure dependence of viscosity.On the basis of the present theory, earlier work in this area is discussed and, in some cases, apparent inaccuracies or inconsistencies are pointed out. A means is indicated for correcting data on the basis of the present theory.
Zusammenfassung Es wird der Effekt der Erwärmung einer Potenzflüssigkeit infolge viskoser Reibung in einem Kapillar-Rheometer mittels einer Störungsrechnung untersucht, die auf der Unterteilung der Strömung in eine Grenzschicht und einen Kern basiert. Diese Störungsentwicklung ergänzt eine früher von anderen Autoren gefundene Reihenentwicklung mit Hilfe von Eigenfunktionen. Eine ähnliche Untersuchung wird für die thermische Ausdehnungsarbeit durchgeführt. Diese beiden thermischen Effekte sind zusammen einem dritten Störeffekt superponiert, der von der Druckabhängigkeit der Viskosität herrührt.Aufgrund der vorgelegten Theorie werden verschiedene auf diesem Gebiet früher durchgeführte Arbeiten diskutiert, und es werden in einigen Fällen offensichtliche Ungenauigkeiten und Folgewidrigkeiten aufgedeckt. Schließlich wird eine Methode zur Korrektur von Meßdaten mit Hilfe der vorliegenden Theorie angegeben.

Nomenclature a tube radius - b ; evaluated atT 0 andp = 0 when used in perturbation expansion - C p specific heat - f - f * - h defined by eq. [15] - k thermal conductivity - L tube length - m defined by eq. [8] - m 0 m(T0, 0) - n power-law index - p pressure - Pe C p W a/k Peclet number - Pr C pa/k Prandtl number - Q volumetric flow rate - Q 0 unperturbed value ofQ in specified-p formulation - r radial coordinate - Re W a/ a Reynolds number - T temperature - T 0 inlet temperature - u radial velocity component - u 0 0 unperturbed radial velocity - w axial velocity component - w 0 /W(1 – ) unperturbed axial velocity - W Q/(a 2) average axial velocity - W 0 Q 0/(a 2) - z axial coordinate - (3n + 1)/n - * ; evaluated atT 0 andp = 0 when used in perturbation expansion - 41-n - * - (n + 1)/n - ... shear rate - 4W/a apparent shear rate - p total pressure drop - T a W 2/k characteristic temperature difference - T b total bulk-temperature rise - * T - r/a - shear viscosity - a m0 - (1 –)/ 1/3 - p/z - 0 ... unperturbed value of - z-averaged value of - µ n + 1/n - z/(a Pe) - L L/(a Pe) - mass density - w shear stress at wall - streamfunction - *T0 (absolute temperature scale) - ( )1 leading-order effect due to viscous heating - ( ) 1 * leading-order effect due to work-of-expansion Note: in specified-p formulation,W gets replaced byW 0 in definition of Pe, Re, and. With 7 figures and 7 tables  相似文献   

6.
In this paper the flow is studied of an incompressible viscous fluid through a helically coiled annulus, the torsion of its centre line taken into account. It has been shown that the torsion affects the secondary flow and contributes to the azimuthal component of velocity around the centre line. The symmetry of the secondary flow streamlines in the absence of torsion, is destroyed in its presence. Some stream lines penetrate from the upper half to the lower half, and if is further increased, a complete circulation around the centre line is obtained at low values of for all Reynolds numbers for which the analysis of this paper is valid, being the ratio of the torsion of the centre line to its curvature.Nomenclature A =constant - a outer radius of the annulus - b unit binormal vector to C - C helical centre line of the pipe - D rL - g 1000 - K Dean number=Re2 - L 1+r sin - M (L 2+ 2 r 2)1/2 - n unit normal vector to C - P, P pressure and nondimensional pressure - p 0, p pressures of O(1) and O() - Re Reynolds number=aW 0/ - (r, , s), (r, , s) coordinates and nondimensional coordinates - nonorthogonal unit vectors along the coordinate directions - r 0 radius of the projection of C - t unit tangent vector to C - V r, V , V s velocity components along the nonorthogonal directions - Vr, V, V s nondimensional velocity components along - W 0 average velocity in a straight annulus Greek symbols , curvature and nondimensional curvature of C - U, V, W lowest order terms for small in the velocity components along the orthogonal directions t - r, , s first approximations to V r , V, V s for small - =/=/ - kinematic viscosity - density of the fluid - , torsion and nondimensional torsion of C - , stream function and nondimensional stream function - nondimensional streamfunction for U, V - a inner radius of the annulus After this paper was accepted for publication, a paper entitled On the low-Reynolds number flow in a helical pipe, by C.Y. Wang, has appeared in J. Fluid. Mech., Vol 108, 1981, pp. 185–194. The results in Wangs paper are particular cases of this paper for =0, and are also contained in [9].  相似文献   

7.
The seepage velocity arising from pressure and buoyancy driving forces in a slender vertical layer of fluid-saturated porous media is considered. Quadratic drag (Forcheimer effects) and Brinkman viscous forces are included in the analysis. Parameters are identified which characterize the influence of matrix permeability, quadratic drag and buoyancy. An explicit solution is obtained for pressure-driven flow which illustrates the influence of quadratic drag and the strong boundary layer behavior expected for low permeability media. The experimental data of Givler and Altobelli [2] for water seepage through a high porosity foam is found to yield good agreement with the present analysis. For the case of buoyancy-driven flow, a uniformly valid approximate solution is found for low permeability media. Comparison with the pressure-driven case shows strong similarities in the near-wall region.Nomenclature B function of - d layer thickness - D discriminant defined by Equation (9) - modified Darcy number - F Forcheimer constant - g gravitational acceleration - k porous matrix permeability - m parameter defined by Equation (11) - p pressure - p modified pressure - pressure gradient - R buoyancy parameter - T 0 nominal layer temperature - u seepage velocity - dimensionless seepage velocity - c composite approximation - i boundary layer velocity - o outer or core flow approximation - m midplane velocity - U matching velocity - V cross-sectional average velocity - w variable defined by Equation (12) - x, z Cartesian coordinates - , dimensionless Cartesian coordinates - inertia parameter - T layer temperature difference - larger root of cubic given by Equation (8) - fluid dynamic viscosity - e effective viscosity of fluid saturated medium - variable defined by Equation (18) - 0 fluid density - smaller root of cubic given by Equation (8) - variable defined by Equation (18) - stretched inner coordinate - porosity - function of   相似文献   

8.
An analysis is presented for laminar source flow between parallel stationary porous disks with suction at one of the disks and equal injection at the other. The solution is in the form of an infinite series expansion about the solution at infinite radius, and is valid for all suction and injection rates. Expressions for the velocity, pressure, and shear stress are presented and the effect of the cross flow is discussed.Nomenclature a distance between disks - A, B, ..., J functions of R w only - F static pressure - p dimensionless static pressure, p(a 2/ 2) - Q volumetric flow rate of the source - r radial coordinate - r dimensionless radial coordinate, r/a - R radial coordinate of a point in the flow region - R dimensionless radial coordinate of a point in the flow region, R - Re source Reynolds number, Q/2a - R w wall Reynolds number, Va/ - reduced Reynolds number, Re/r 2 - critical Reynolds number - velocity component in radial direction - u dimensionless velocity component in radial direction, a/ - average radial velocity, Q/2a - u dimensionless average radial velocity, Re/r - ratio of radial velocity to average radial velocity, u/u - velocity component in axial direction - v dimensionless velocity component in axial direction, v - V magnitude of suction or injection velocity - z axial coordinate - z dimensionless axial coordinate, z a - viscosity - density - kinematic viscosity, / - shear stress at lower disk - shear stress at upper disk - 0 dimensionless shear stress at lower disk, - 1 dimensionless shear stress at upper disk, - dimensionless stream function  相似文献   

9.
Zusammenfassung Der Einfluß der Rotation auf das Temperaturprofil und die Wärmeübergangszahl einer laminaren Rohrströmung im Bereich des thermischen Einlaufs wird theoretisch untersucht. Es wird angenommen, daß das Geschwindigkeitsprofil voll ausgebildet ist. Die Rotation hat einen destabilisierenden Einfluß auf die Laminarströmung, die umschlägt und turbulent wird. Aufgrund der Anfachung der Turbulenz durch die Rotation verbessert sich die Wärmeübertragung mit steigender Rotations-Reynoldszahl und die thermische Einlauflänge nimmt beträchtlich ab.
Heat transfer in an axially rotating pipe in the thermal entrance region. Part 2: Effect of rotation on laminar pipe flow
The effects of tube rotation on the temperature distribution and the heat transfer to a fluid flowing inside a tube are examined by analysis in the thermal entrance region. The flow is assumed to be hydrodynamically fully developed. The rotation has a destabilizing effect on the laminar pipe flow, causing a transition to turbulent flow. Therefore, a remarkable increase in heat transfer with increasing rotational Reynolds number can be observed. The thermal entrance length decreases remarkably with growing rotational Reynolds number.

Formelzeichen a Temperaturleitzahl - C n , ,C 1,C 3 Konstanten - c p spezifische Wärme bei konstantem Druck - D Rohrdurchmesser - E Funktion nach Gl. (16) - H n Eigenfunktionen - l hydrodynamischer Mischungsweg - l q thermischer Mischungsweg - N=Re /Re Reynoldszahlenverhältnis - Nu Nusseltzahl - Nu Nusseltzahl für die thermisch voll ausgebildete Strömung - Pr Prandtlzahl - Pr t turbulente Prandtlzahl - Wärmestromdichte - Re * Schubspannungsreynoldszahl - R s Eigenfunktionen - Durchfluß-Reynoldszahl - Re =v D/v Rotations-Reynoldszahl - R Rohrradius - r Koordinate in radialer Richtung - Dimensionslose Koordinate in radialer Richtung - T Temperatur - T b bulk temperature - mittlere Axialgeschwindigkeit - v Geschwindigkeit - dimensionsloser Wandabstand - Integrationsvariable - Integrationsvariable - , dimensionslose Temperaturen - Wärmeleitzahl - p Eigenwerte - kinematische Viskosität - Dichte - tangentiale Koordinate - , Hilfsfunktionen Indizes m in der Rohrmitte - r radial - w an der Rohrwand - z axial - 0 am Rohreintritt - 0 ohne Rotation - tangential  相似文献   

10.
Zusammenfassung Die bekannten Wärmeübertragerdiagramme, in denen die dimensionslosen Temperaturänderungen beider Stoffströme auf den Koordinatenachsen aufgetragen sind, werden modifiziert, um die Nachteile der bisherhigen Darstellung zu vermeiden. Diese neuen Diagramme werden für einige einfache Stromführungen angegeben und mit anderen gebräuchlichen Diagrammen verglichen. Anhand von Beispielen wird die Anwendung erläutert.
Improved chart for heat exchanger design
The known heat exchanger charts with dimensionless temperature changes of both fluid streams as coordinate axes are modified to eliminate the disadvantages of the previous representation. Graphs are presented for some simple heat exchanger configurations. The new chart is compared to other usual charts. The application is illustrated by examples.

Formelzeichen A Austauschfläche - F Korrekturfaktor für die logarithmische mittlere Temperaturdifferenz; F=IM/ILM - k Wärmedurchgangskoeffizient - NTU Anzahl der Übertragungseinheiten (number of transfer units);NTU i = k A/ i - P dimensionslose Temperaturänderung - Pe Pecletzahl - R Kapazitätsstromverhältnis;R 1 = 1/ 2;R 2 = 2/ 1 - Kapazitätsstrom - IM mittlere Temperaturdifferenz - ILM logarithmische mittlere Temperaturdifferenz - dimensionslose mittlere Temperaturdifferenz - IM Temperatur Indizes 1, 2 Stoffstrom 1, 2 - am Eintritt - am Austritt Herrn Prof. Dr.-Ing. K. Stephan zum 60. Geburtstag gewidmet  相似文献   

11.
We study the simultaneous one-dimensional flow of water and oil in a heterogeneous medium modelled by the Buckley-Leverett equation. It is shown both by analytical solutions and by numerical experiments that this hyperbolic model is unstable in the following sense: Perturbations in physical parameters in a tiny region of the reservoir may lead to a totally different picture of the flow. This means that simulation results obtained by solving the hyperbolic Buckley-Leverett equation may be unreliable.Symbols and Notation f fractional flow function varying withs andx - value off outsideI - value off insideI - local approximation off around¯x - f ,f + values of - f j n value off atS j n andx j - g acceleration due to gravity [ms–2] - I interval containing a low permeable rock - k dimensionless absolute permeability - k * absolute permeability [m2] - k c * characteristic absolute permeability [m2] - k ro relative oil permeability - k rw relative water permeability - L * characteristic length [m] - L 1 the space of absolutely integrable functions - L the space of bounded functions - P c dimensionless capillary pressure function - P c * capillary pressure function [Pa] - P c * characteristic pressure [Pa] - S similarity solution - S j n numerical approximation tos(xj, tn) - S 1, S2,S 3 constant values ofs - s water saturation - value ofs at - s L left state ofs (wrt. ) - s R right state ofs (wrt. ) - s s for a fixed value of in Section 3 - T value oft - t dimensionless time coordinate - t * time coordinate [s] - t c * characteristic time [s] - t n temporal grid point,t n=n t - v * total filtration (Darcy) velocity [ms–1] - W, , v dimensionless numbers defined by Equations (4), (5) and (6) - x dimensionless spatial coordinate [m] - x * spatial coordinate [m] - x j spatial grid piont,x j=j x - discontinuity curve in (x, t) space - right limiting value of¯x - left limiting value of¯x - angle between flow direction and horizontal direction - t temporal grid spacing - x spatial grid spacing - length ofI - parameter measuring the capillary effects - argument ofS - o dimensionless dynamic oil viscosity - w dimensionless dynamic water viscosity - c * characteristic viscosity [kg m–1s–1] - o * dynamic oil viscosity [kg m–1s–1] - w * dynamic water viscosity [k gm–1s–1] - o dimensionless density of oil - w dimensionless density of water - c * characteristic density [kgm–3] - o * density of oil [kgm–3] - w * density of water [kgm–3] - porosity - dimensionless diffusion function varying withs andx - * dimensionless function varying with s andx * [kg–1m3s] - j n value of atS j n andx j This research has been supported by VISTA, a research cooperation between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap a.s. (Statoil).  相似文献   

12.
Summary Creeping flow past a sphere is solved for a limiting case of fluid behaviour: an abrupt change in viscosity.List of Symbols d ij Component of rate-of-deformation tensor - F d Drag force exerted on sphere by fluid - G (d) Coefficients in expression for ij in terms of d ij - G YOJK (d) Coefficients in power series representing G (d) - R Radius of sphere - r Spherical coordinate - V Velocity of fluid very far from sphere - v i Component of the velocity vector - x Dimensionless radial distance, r/R - x i Rectangular Cartesian coordinate - Dimensionless quantity defined by (26) - (d) Potential defined by (7) - Value of x denoting border between Regions 1 and 2 as a function of - 1, 2 Lower and upper limiting viscosities defined by (10) - Spherical coordinate - * Value of for which =1 - Value of denoting border between regions 1 and 2 as a function of x - Newtonian viscosity - ij Component of the stress tensor - Spherical coordinate - 1, 2 Stream functions defined by (12) and (14) - Second and third invariants of the stress tensor and of the rate-of-deformation tensor, defined by (3)  相似文献   

13.
In this paper we examine the closure problem associated with the volume averaged form of the Stokes equations presented in Part II. For both ordered and disordered porous media, we make use of a spatially periodic model of a porous medium. Under these circumstances the closure problem, in terms of theclosure variables, is independent of the weighting functions used in the spatial smoothing process. Comparison between theory and experiment suggests that the geometrical characteristics of the unit cell dominate the calculated value of the Darcy's law permeability tensor, whereas the periodic conditions required for thelocal form of the closure problem play only a minor role.Roman Letters A interfacial area of the- interface contained within the macroscopic region, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A interfacial area of the- interface associated with the local closure problem, m2 - A p surface area of a particle, m2 - b vector used to represent the pressure deviation, m–1 - B 0 B+I, a second order tensor that maps v m ontov - B second-order tensor used to represent the velocity deviation - d p 6V p/Ap, effective particle diameter, m - d a vector related to the pressure, m - D a second-order tensor related to the velocity, m2 - g gravity vector, m/s2 - I unit tensor - K traditional Darcy's law permeability tensor calculated on the basis of a spatially periodic model, m2 - K m permeability tensor for the weighted average form of Darcy's law, m2 - L general characteristic length for volume averaged quantities, m - L p characteristic length for the volume averaged pressure, m - L characteristic length for the porosity, m - L v characteristic length for the volume averaged velocity, m - characteristic length (pore scale) for the-phase - i i=1, 2, 3 lattice vectors, m - weighting function - m(-y) , convolution product weighting function - m v special convolution product weighting function associated with the traditional averaging volume - m g general convolution product weighting function - m V unit cell convolution product weighting function - m C special convolution product weighting function for ordered media which produces the cellular average - n unit normal vector pointing from the-phase toward the -phase - p pressure in the-phase, N/m2 - p m superficial weighted average pressure, N/m2 - p m intrinsic weighted average pressure, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - p p m , spatial deviation pressure, N/m2 - r 0 radius of a spherical averaging volume, m - r m support of the convolution product weighting function - r position vector, m - r position vector locating points in the-phase, m. - V averaging volume, m3 - B volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - v velocity vector in the-phase, m/s - v m superficial weighted average velocity, m/s - v m intrinsic weighted average velocity, m/s - v traditional superficial volume averaged velocity, m/s - v v m , spatial deviation velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the -phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V /V, volume average porosity - m m * , weighted average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2  相似文献   

14.
The theory of a vibrating-rod densimeter   总被引:1,自引:0,他引:1  
The paper presents a theory of a device for the accurate determination of the density of fluids over a wide range of thermodynamic states. The instrument is based upon the measurement of the characteristics of the resonance of a circular section tube, or rod, performing steady, transverse oscillations in the fluid. The theory developed accounts for the fluid motion external to the rod as well as the mechanical motion of the rod and is valid over a defined range of conditions. A complete set of working equations and corrections is obtained for the instrument which, together with the limits of the validity of the theory, prescribe the parameters of a practical design capable of high accuracy.Nomenclature A, B, C, D constants in equation (60) - A j , B j constants in equation (18) - a j + , a j wavenumbers given by equation (19) - C f drag coefficient defined in equation (64) - C f /0 , C f /1 components of C f in series expansion in powers of - c speed of sound - D b drag force of fluid b - D 0 coefficient of internal damping - E extensional modulus - force per unit length - F j + , F j constants in equation (24) - f, g functions of defined in equations (56) - G modulus of rigidity - I second moment of area - K constant in equation (90) - k, k constants defined in equations (9) - L half-length of oscillator - Ma Mach number - m a mass per unit length of fluid a - m b added mass per unit length of fluid b - m s mass per unit length of solid - n j eigenvalue defined in equation (17) - P power (energy per cycle) - P a , P b power in fluids a and b - p pressure - R radius of rod or outer radius of tube - R c radius of container - R i inner radius of tube - r radial coordinate - T tension - T visc temperature rise due to heat generation by viscous dissipation - t time - v r , v radial and angular velocity components - y lateral displacement - z axial coordinate - dimensionless tension - a dimensionless mass of fluid a - b dimensionless added mass of fluid b - b dimensionless drag of fluid b - dimensionless parameter associated with - 0 dimensionless coefficient of internal damping - dimensionless half-width of resonance curve - dimensionless frequency difference defined in equation (87) - spatial resolution of amplitude - R, , , s , increments in R, , , s , - dimensionless amplitude of oscillation - dimensionless axial coordinate - ratio of to - a , b ratios of to for fluids a and b - angular coordinate - parameter arising from distortion of initially plane cross-sections - f thermal conductivity of fluid - dimensionless parameter associated with - viscosity of fluid - a , b viscosity of fluids a and b - dimensionless displacement - j jth component of - density of fluid - a , b density of fluids a and b - s density of tube or rod material - density of fluid calculated on assumption that * - dimensionless radial coordinate - * dimensionless radius of container - dimensionless times - rr rr, r radial normal and shear stress components - spatial component of defined in equation (13) - j jth component of - dimensionless streamfunction - 0, 1 components of in series expansion in powers of - phase angle - r phase difference - ra , rb phase difference for fluids a and b - streamfunction - j jth component defined in equation (22) - dimensionless frequency (based on ) - a , b dimensionless frequency in fluids a and b - s dimensionless frequency (based on s ) - angular frequency - 0 resonant frequency in absence of fluid and internal damping - r resonant frequency in absence of internal fluid - ra , rb resonant frequencies in fluids a and b - dimensionless frequency - dimensionless frequency when a vanishes - dimensionless frequencies when a vanishes in fluids a and b - dimensionless resonant frequency when a , b, b and 0 vanish - dimensionless resonant frequency when a , b and b vanish - dimensionless resonant frequency when b and b vanish - dimensionless frequencies at which amplitude is half that at resonance  相似文献   

15.
Time-dependent nonlinear flow behavior was investigated for a model hard-sphere suspension, a 50 wt% suspension of spherical silica particles (radius = 40 nm; effective volume fraction = 0.53) in a 2.27/1 (wt/wt) ethylene glycol/glycerol mixture. The suspension had two stress components, the Brownian stress B and the hydrodynamic stress H After start-up of flow at various shear rates , the viscosity growth function + (t, ) was measured with time t until it reached the steady state. The viscosity decay function (t, ) was measured after cessation of flow from the steady as well as transient states. At low where the steady state viscosity ( ) exhibited the shear-thinning, the (t, ) and + (t, ) data were quantitatively described with a BKZ constitutive equation utilizing data for nonlinear relaxation moduli G (t, ). This result enabled us to attribute the thinning behavior to the decrease of the Brownian contribution B = B / (considered in the BKZ equation through damping of G (t, )). On the other hand, at high where ( ) exhibited the thickening, the BKZ prediction largely deviated from the + (t, ) and + (t, ) data, the latter obtained after cessation of steady flow. This result suggested that the thickening was due to an enhancement of the hydrodynamic contribution H = H / (not considered in the BKZ equation). However, when the flow was stopped at the transient state and only a small strain (<0.2) was applied, H was hardly enhanced and the (t, ) data agreed with the BKZ prediction. Correspondingly, the onset of thickening of + (t, ) was characterized with a -insensitive strain ( 0.2). On the basis of these results, the enhancement of H (thickening mechanism) was related to dynamic clustering of the particles that took place only when the strain applied through the fast flow was larger than a characteristic strain necessary for close approach/collision of the particles.  相似文献   

16.
If a fluid enters an axially rotating pipe, it receives a tangential component of velocity from the moving wall, and the flow pattern change according to the rotational speed. A flow relaminarization is set up by an increase in the rotational speed of the pipe. It will be shown that the tangential- and the axial velocity distribution adopt a quite universal shape in the case of fully developed flow for a fixed value of a new defined rotation parameter. By taking into account the universal character of the velocity profiles, a formula is derived for describing the velocity distribution in an axially rotating pipe. The resulting velocity profiles are compared with measurements of Reich [10] and generally good agreement is found.Nomenclature b constant, equation (34) - D pipe diameter - l mixing length - l 0 mixing length in a non-rotating pipe - N rotation rate,N=Re /Re D - p pressure - R pipe radius - Re D flow-rate Reynolds number, - Re rotational Reynolds number, Re =v w D/ - Re* Reynolds number based on the friction velocity, Re*=v*R/ - (Re*)0 Reynolds number based on the friction velocity in a non-rotating pipe - Ri Richardson number, equation (10) - r coordinate in radial direction - dimensionless coordinate in radial direction, - v r ,v ,v z time mean velocity components - v r ,v ,v z velocity fluctations - v w tangential velocity of the pipe wall - v* friction velocity, - axial mean velocity - v ZM maximum axial velocity - dimensionless radial distance from pipe wall, - y + dimensionless radial distance from pipe wall - y 1 + constant - Z rotation parameter,Z =v w/v * =N Re D /2Re* - m eddy viscosity - ( m )0 eddy viscosity in a non-rotating pipe - coefficient of friction loss - von Karman constant - 1 constant, equation (31) - density - dynamic viscosity - kinematic viscosity  相似文献   

17.
H. Potente 《Rheologica Acta》1988,27(4):410-417
Zusammenfassung Das Mischen von Stoffen mit unterschiedlichen rheologischen Eigenschaften in Schneckenmaschinen ist in der Kunststoffauf- und -verarbeitung eine Standardaufgabe. Trotzdem gibt es hierfür kein zufriedenstellendes mathematisch-physikalisches Modell. Daher werden zunächst einfache Mischmodelle diskutiert. Auf der Basis dieser Modelle wird dann unter Berücksichtigung der Besonderheiten des Plastifizierextruderprozesses eine Mischgütebeziehung mathematisch formuliert. Die experimentelle Überprüfung erfolgt mit Hilfe der Grauwertanalyse extrudierter Zweistoffsysteme, bei denen ein Stoff mit Ruß eingefärbt war. Da der Mischprozeß hochgradig stochastisch ist, streuen die Meßergebnisse. Unter Berücksichtigung dieses Tatbestandes ist der theoretische Ansatz zufriedenstellend.
Mixing of polymer resins with different rheological properties is a usual demand in plastics processing using screw extruders. A mathematical model describing this processing problem sufficiently is not known, however. Therefore, simple mixing models will be discussed. Based on these, a concept for the calculation of mixing homogeneity will be presented, including the particular requirement of the plasticating screw process. An experimental investigation utilizes the grey-value analysis of extruded two-component materials, which in one phase is carbon-black filled. Considering the fact that the mixing process is highly random, the theoretical model leads to a good level of aggreement with the scattering measurement data.

b Schneckenkanalbreite - B Bandbreite der Grauwerte - c Konstante - mittlere Konzentration, bezogen auf die Grauwertbandbreite - h Höhe, Gangtiefe, Schneckenkanalhöhe - h 0 Gangtiefe der Einzugszone - h 1 Gangtiefe der Ausstoßzone - L Länge - gemittelte Schmelzebettlänge - n Exponent des Potenzfließgesetzes - s Standardabweichung der Grauwerte bezogen auf die Grauwertbandbreite - S Standardabweichung der Grauwerte - t Verweilzeit - t 1 kürzeste Verweilzeit - mittlere Verweilzeit - 0 Umfangsgeschwindigkeit - mittlere Geschwindigkeit - V Volumenstrom - w Dicke eines Kontrollelements - w Ausstreichdicke eines Kontrollelements - x Koordinate - Mittelwert der Grauwerte - y Koordinate - Scherdeformationswinkel - Scherdeformation - mittlere Scherdeformation - Schergeschwindigkeit - Viskosität - 1 dimensionslose kürzeste Verweilzeit - dimensionsloser Volumenstrom - LSM laminarer Schermischgrad - LSM, the theoretischer laminarer Schermischgrad - LSM, exp experimenteller laminarer Schermischgrad - 2 Varianz der Verweilzeit im Schmelzebett - Schubspannung - Gangsteigungswinkel der Schnecke - ø Volumenanteil - dimensionslose Kennzahl  相似文献   

18.
The characteristics of three-dimensional flow structures (scars and striations) resulting from the interaction between a heterostrophic vortex pair in vertical ascent and a clean free surface are described. The flow features at the scar-striation interface (a constellation of whirls or coherent vortical structures) are investigated through the use of flow visualization, a motion analysis system, and the vortex-element method. The results suggest that the striations are a consequence of the short wavelength instability of the vortex pair and the helical instability of the tightly spiralled regions of vorticity. The whirls result from the interaction of striations with the surface vorticity. The whirl-merging is responsible for the reverse energy cascade leading to the formation and longevity of larger vortical structures amidst a rapidly decaying turbulent field.List of symbols A c Area of a vortex core (Fig. 6b) - AR Aspect ratio of the delta wing model - B base width of delta wing - b 0 initial separation of the vortex couple - d 0 depth at which the vortex pair is generated - c average whirl spacing in the x-direction - E energy density - Fr Froude number ( ) - g gravitational acceleration - L length of the scar band - L ko length of the Kelvin oval - N w number of whirls in each scar band - P c Perimeter of a vortex core - q surface velocity vector - r c core size of the whirl ( = 2A c/P c) - Re Reynolds number ( = ) - Rnd a random number - s inboard edge of the scar front (Fig. 6 a) - t time - u velocity in the x-direction - velocity in the y-direction - V b velocity imposed on a scar by the vortex couple (Fig. 6 a) - V 0 initial mutual-induction velocity of the vortex couple (=0/2b 0) - V t tangential velocity at the edge of the whirl core - w width of the scar front (Fig. 6 a) - z complex variable - z k position of the whirl center - half included angle of V-shaped scar band - wave number - m initial mean circulation of the whirls - 0 initial circulation of the vortex pair - w circulation of a whirl - min minimum survival strength of a whirl - t time step - gDz increment of z - gD change in vorticity - cut-off distance in velocity calculations - critical merging distance - curvature of the surface - wavelength - kinematic viscosity - angular velocity of a whirl core  相似文献   

19.
Zusammenfassung In einem Dehnungsrheometer werden Spannungs-Dehnungs-Diagramme von Polyäthylen-Schmelzen bei 150 °C und bei konstanter Dehnungsgeschwindigkeit gemessen ( zwischen 0,001 und 1 sec–1). Weiterhin wird der reversible (elastische) Dehnungsanteil bestimmt. Messungen mit einem Dehnungstester für Kunststoff-Schmelzen ergänzen die Ausführungen.Die Ergebnisse zeigen deutlich, daß bei Dehnung mit zunehmender Verformungsgeschwindigkeit die Dehnungsviskosität nicht abnimmt, im Gegensatz zu dem bekannten strukturviskosen Verhalten bei Scherung.Bei Dehnungen bis zu=1 kann das Verhalten unabhängig von beschrieben werden, wenn als viskoelastische Materialfunktion die Dehnungs-Spannviskosität betrachtet wird. In diesem Bereich von gilt dabei die BeziehungT(t)=3 s (t) mit s (t) als zeitabhängige Scherviskosität im linear-viskoelastischen Bereich.Bei größeren Dehnungen und nicht zu kleinen Dehnungsgeschwindigkeiten zeigt verzweigtes Polyäthylen eine zusätzliche starke Spannungszunahme. In dem Bereich dieser zusätzlichen Verfestigung ist das Verhalten im wesentlichen eine Funktion der Dehnung und fast unabhängig von . Die zusätzliche Verfestigung scheint eine Folge der Verzweigungsstruktur des verzweigten Polyäthylens zu sein, da bei Linear-PE ein derartiger Verlauf des Spannungs-Dehnungs-Diagramms nicht beobachtet wird.Die Betrachtung des reversiblen Dehnungsanteils R zeigt bei der ausführlich untersuchten Schmelze I (verzweigtes PE) drei verschiedene Bereiche: Unterhalb einer Grenzdehnungsgeschwindigkeit ist R =0, unterhalb einer Versuchszeitt ** ist R =. Im dazwischenliegenden Bereich treten elastische und viskose Dehnungsanteile auf,= R + V , wobei für niedrige gilt, daß R lg . Die Grenze wird der Frequenz der thermisch aktivierten Platzwechsel zugeordnet,t ** erscheint als Zeit, innerhalb der die Verhakungen wie fixierte Vernetzungen wirken.In dem Anhang wird der Einfluß der Grenzflächenspannung zwischen PE-Schmelze und Silikonöl auf die Ergebnisse der Dehnungsversuche diskutiert.
Summary Stress-strain relations for different PE melts are measured at 150 °C in an extensional rheometer under the condition of a constant extensional strain rate ( between 0,001 and 1 sec–1). Further, the recoverable (elastic) portion R of the total strain ( in Hencky's measure) is determined and additional measurements with a tensile tester for polymer melts are described.The results show clearly that in extension there is no decrease of the tensile viscosity with increasing deformation rate, in contrast to the well-known pseudoplastic behaviour in shear. Within total strains<1 the tensile behaviour can be described independently from by means of a viscoelastic material function called stressing viscosity . In this range of the relation T (t)=3 s (t) holds, where s (t) is the stressing viscosity in shear in the linear viscoelastic range. For larger tensile strains and not too small branched PB shows a remarkable increase in stress. This work-hardening behaviour is mainly a function of and almost independent from . This additional hardening seems to be due to the branches in branched PE, because linear PE does not show this effect.The discussion of the recoverable tensile strain R gives three regions of tensile rate: Below a critical there is R =0. At times shorter thant ** the equation R = is valid. Within these limits both elastic and viscous portions of the total strain= R + V exist. may correlate with the frequency of the thermally activated position changes of the molecular segments.t ** is assumed to be the time for the entanglements to act as fixed cross-links.In the appendix the influence of the interface tension between PE melt and silicone oil on the results of the tensile experiments is discussed.


Vorgetragen auf der Deutschen Rheologen-Tagung, Berlin, 11.-13. Mai 1970.

An der Weiterentwicklung des Dehnungsrheometers, an der Durchführung und Auswertung der Messungen waren die HerrenB. Kienle, F. Landmesser, M, Reuther undF. Scherr beteiligt. Herr Dr.F.Ramsteiner und HerrH. Schroeck haben sich um die Herstellung der Stränge aus Linear-PE bemüht. Herr Dr.W. Ball besorgte die GPC-Messungen und Herr Dr.P. Simak die Ultrarot-Untersuchung. Den vorgenannten Herren sei für ihre Hilfe beim Zustandekommen dieser Arbeit gedankt. Herrn Dr.H. Baur danke ich für wertvolle Diskussionen.  相似文献   

20.
Zusammenfassung Basierend auf dem Fließgesetz nachL. Prandtl werden Einschneckenpressen und Einwalzen-Extruder als Austragsmaschinen für schmelzflüssige Kunststoffe hinsichtlich ihres Pumpwirkungsgrades und dessen Stabilität als Funktionen von zwei dimensionslosen Kennzahlen untersucht. Dabei ergeben sich grundsätzliche Vorteile für (einfache und multiple) Einwalzen-Extruder: Reduzierte Baulänge, größere Stabilität des energetischen Verhaltens, niedrigere Antriebsdrehmomente und entsprechend kleinere Getriebe, günstigere Kühlungsmöglichkeiten sowie größere Flexibilität der modellmäßigen Ansätze (relative Schleppspaltbreiteb/D als freie Variable)
Summary The paper gives an analysis of hot-melt extrusion with drag-flow pumps, especially referring to the efficiency ( volume throughput,p extrusion pressure,P drive power requirement) calculated on the basis of the rheological equation proposed byPrandtl. It is shown that is a unique function of two dimensionless variables, and. The(, )-relief is used to introduce another dimensionsless figure,=1/|grad|, describing the operational stability of the pump at the selected design and working conditions. — Generally it is found that, with respect to operational stability at a given volume throughput, so-called single-roller extruders with a comparatively small length may offer advantages over conventional single-screw pumps.

Symbole a dimensionsloser Drosselquotient - A stoffspezifische Schubspannung, Gl. [1] - b Breite des Schleppspalts, Gl. [8] - C stoffspezifische Schergeschwindigkeit, Gl. [1] - D Durchmesser des rotierenden Elements der Schleppströmungspumpe - e spezifische Antriebsleistung, Gl. [3] - F Mantelfläche des Schleppspalts, Gl. [9] - g Gangzahl der Schnecke bzw. Anzahl der Schleppspalte, Gl. [11b] - h Höhe (Radialmaß) des Schleppspalts, Gl. [6] - K Abkürzung, Gl. [7] - l Länge des Schleppspalts, allgemein, Gl. [5] - L wirksame axiale Schneckenlänge, Gl. [11a] - M d Drehmoment, Gl. [4] - n Umdrehungsgeschwindigkeit, Arbeitsdrehzahl des rotierenden Elements, Gl. [4] - p Betriebsdruck, Gl. [2] - P aufgenommene Antriebsleistung, Gl. [2] - q dimensionsloser Quotient, Gl. [1b] - s zirkulare Länge des Schleppspalts, Gl. [11b] - S Abkürzung, Gl. [15] - v 0 Umfangsgeschwindigkeit des rotierenden Elements, Gl. [6] - Volumendurchsatz, Gl. [2] - Volumendurchsatz der Druck(gradienten)strömung - Volumendurchsatz der Schleppströmung - y Ortskoordinate - Schergeschwindigkeit, Gl. [1] - generalisierter Drosselquotient, Gl. [14] - dimensionslose Systemkennzahl, Gl. [5] - dimensionsloser Pumpwirkungsgrad, Gl. [2] - µ 0 Nullviskosität (A/C) - Stabilitätskennzahl, Gl. [20] - Schubspannung - w Wandschubspannung - Gangsteigungswinkel - Funktionszeichen, Gl. [17] - dimensionslose Kennzahl, Gl. [21] - dimensionslose Systemkennzahl, Gl. [6] P.S.: Nach Eingang des Manuskripts dieses Beitrages bei der Redaktion (8.12.1977) wurde der Verfasser durch ein Schreiben von Prof. Dr.E. Becker/Darmstadt (datiert 21.12.1977) auf dessen Vorveröffentlichung der Abbildung 3 a hingewiesen:Mech. Res. Comm.4 (4), 235–240 (1977), dort. Figure 3.Mit 9 Abbildungen  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号