首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibilities of laser nanosecond fluorometry in the diagnostics of humic substances (HSs) are investigated. A conclusion on the quantity of fluorophores that determine the HS fluorescence kinetics is drawn. The differences in the molecular photophysical parameters are revealed and measured for HSs of different genesises.  相似文献   

2.
Kumar AT  Skoch J  Bacskai BJ  Boas DA  Dunn AK 《Optics letters》2005,30(24):3347-3349
We derive a novel algorithm to recover the in vivo distributions of fluorophores based on an asymptotic life-time analysis of time-domain fluorescence measurements with turbid tissue. We experimentally demonstrate the advantage offered by this method in localizing fluorophores with distinct lifetimes. This algorithm has wide applicability for diagnostic fluorescence imaging in the presence of several-centimeter-thick biological tissue, since fluorescence lifetime is a sensitive indicator of local tissue environment and interactions at the molecular level.  相似文献   

3.
利用一种基于时间相关单光子计数器的双光子激发荧光寿命显微成像技术,对猪眼底视网膜色素上皮层细胞内的脂褐素和氧化黑色素颗粒的空间分布及其荧光寿命特性进行了研究,尤其对于这些色素颗粒在光致氧化环境中的荧光寿命差异进行了分析.结果表明,利用荧光寿命测量能有效区分视网膜色素上皮层细胞中的多组分荧光团,利用荧光寿命的衰减参数可分辨正常及异常的荧光现象.该方法有望发展成为一种用于眼科临床诊断及病理学研究的高灵敏度的工具,对眼底细胞随年龄增长的衰老机理的研究具有重要的意义. 关键词: 双光子激发荧光 荧光寿命成像 视网膜色素上皮层  相似文献   

4.
利用一种基于时间相关单光子计数器的双光子激发荧光寿命显微成像技术,对猪眼底视网膜色素上皮层细胞内的脂褐素和氧化黑色素颗粒的空间分布及其荧光寿命特性进行了研究,尤其对于这些色素颗粒在光致氧化环境中的荧光寿命差异进行了分析.结果表明,利用荧光寿命测量能有效区分视网膜色素上皮层细胞中的多组分荧光团,利用荧光寿命的衰减参数可分辨正常及异常的荧光现象.该方法有望发展成为一种用于眼科临床诊断及病理学研究的高灵敏度的工具,对眼底细胞随年龄增长的衰老机理的研究具有重要的意义.  相似文献   

5.
We report a wide-field fluorescence lifetime imaging microscope based on a low-repetition-rate (3.7-MHz) passively mode-locked diode-pumped laser source. This inexpensive and compact laser source operating in the visible and UV range can excite a wide range of fluorophores of biological interest. We demonstrate that the power of this laser source is highly sufficient for studying biological systems with low quantum yields (autofluorescence of tissues and stained living cells). The maximum measurable lifetime is also strongly increased with this laser source, as fluorescence intensity measurement can occur 250 ns after the excitation pulse.  相似文献   

6.
The interactions of fluorophores with noble metal particles can modify their emission spectral properties, a relatively new phenomenon in fluorescence. We subsequently examined indocyanine green (ICG), which is widely used in medical testing and imaging, in close proximity to an electrically roughened platinum electrode. The emission intensity and lifetimes were decreased about 2-fold on the roughened surface as compared to a smooth Pt surface, and the photostability about the same. Platinum does not appear promising for metal enhanced fluorescence, at least for long wavelength fluorophores.  相似文献   

7.
We introduce far-field subdiffraction-resolution fluorescence imaging based on photoswitching of individual standard fluorophores in air-saturated solution. Here, photoswitching microscopy relies on the light-induced switching of organic fluorophores (ATTO 655 and ATTO 680) into long-lived metastable dark states and spontaneous repopulation of the fluorescent state. In the presence of low concentrations (2–10 mM) of reducing, thiol-containing compounds such as ß-mercaptoethylamine or glutathione, the density of fluorescent molecules can be adjusted to enable multiple localizations of individual fluorophores with an experimental accuracy of ~20 nm. The method requires wide-field illumination with only a single laser beam for readout and photoswitching and provides superresolution fluorescence images of intracellular structures under live cell compatible conditions.  相似文献   

8.
Fluorescence imaging of intrinsic fluorophores of tissue is a powerful method to assess metabolic changes at the cellular and intracellular levels. At the same time, exogenous phosphorescent probes can be used to accurately measure intravascular tissue oxygenation. Heart failure is the leading cause of death in America. A rat heart can potentially model the human heart to study failures or other abnormalities optically. We report simultaneous fluorescence and phosphorescence measurements performed on a rat heart. We have used two different optical systems to acquire fluorescence signals of flavoprotein and nicotinamide adenine dinucleotide--the two intrinsic fluorophores of mitochondria--and the phosphorescence signal of an intravascular oxygen probe to extract intracellular and intravascular metabolism loads, respectively.  相似文献   

9.
Zhang Q  Müller MG  Wu J  Feld MS 《Optics letters》2000,25(19):1451-1453
We present a method based on photon migration of extracting intrinsic fluorescence spectra from turbid media, using concomitantly measured fluorescence and reflectance. Intrinsic fluorescence is defined as fluorescence that is due only to fluorophores, without interference from the absorbers and scatterers that are present. Application to fluorescence spectra taken with tissue phantoms and human mucosal tissues demonstrates excellent agreement in both spectral line shape and intensity between the extracted and the directly measured intrinsic fluorescence spectra.  相似文献   

10.
We have combined the specificity of antibody labeling, the power of fluorescence detection, and the resolution of scanning electron microscopy (SEM) to identify antigenic sites on nanometer-scale features of mammalian cells. Cathodoluminescence (CL) detection in SEM was used to locate fluorophores bound to antibodies specific for cell surface epitopes. Sample preparation and instrument setup were optimized to yield the maximum luminescence compatible with a high definition secondary electron image. Separable CL component distances of less than 300 nm have been calculated. Antibody-specific fluorophores are associated with unique morphological features on a human dendritic cell. This technology provides a tool to identify the relationship between cell surface structures and receptor-ligand binding or other antigen-defined physiological states.  相似文献   

11.
In this short paper, we reported the enhanced fluorescence from a single fluorophore bound to a 50nm silver nanoparticle. We found that on average the Cy5 molecules bound to metal nanoparticles are approximately 15-fold brighter than that of free dyes, and that single molecule lifetimes are shorter as compared to free fluorophores. The increased emission rate is primarily the result of local plasmon enhancement. These results demonstrate that the use of fluorophore-metal interactions can increase the brightness and photostability of fluorophores for single molecule detection.  相似文献   

12.
Fluorescent probes, which allow visualization of cations such as Ca(2+), Zn(2+) etc., small biomolecules such as nitric oxide (NO) or enzyme activities in living cells by means of fluorescence microscopy, have become indispensable tools for clarifying functions in biological systems. This review deals with the general principles for the design of bioimaging fluorescent probes by modulating the fluorescence properties of fluorophores, employing mechanisms such as acceptor-excited Photoinduced electron Transfer (a-PeT), donor-excited Photoinduced electron Transfer (d-PeT), and spirocyclization, which have been established by our group. The a-PeT and d-PeT mechanisms are widely applicable for the design of bioimaging probes based on many fluorophores and the spirocyclization process is also expected to be useful as a fluorescence off/on switching mechanism. Fluorescence modulation mechanisms are essential for the rational design of novel fluorescence probes for target molecules. Based on these mechanisms, we have developed more than fifty bioimaging probes, of which fourteen are commercially available. The review also describes some applications of the probes developed by our group to in vitro and in vivo systems.  相似文献   

13.
Ye JY  Ishikawa M 《Optics letters》2008,33(15):1729-1731
In contrast to fluorescence enhancement of fluorophores embedded in a photonic crystal structure as previously reported [Appl. Phys. Lett. 75, 3605 (1999)], in this Letter we demonstrate a unique approach to forming an open microcavity using a one-dimensional photonic crystal in a total-internal-reflection geometry. This configuration opens up the possibility for enhancing fluorescence imaging and biosensing. Time-resolved fluorescence detection of fluorophores immobilized on the open cavity has been carried out. Over 20-fold fluorescence enhancement was observed.  相似文献   

14.
We report the first findings of Metal-Enhanced Fluorescence (MEF) from modified plastic substrates. In the past several years our laboratories have reported the favorable effects of fluorophores in close proximity to silver nanoparticles. These effects include, enhanced fluorescence intensities, (increased detectability), and reduced lifetimes, (enhanced fluorophore photostability). All of these reports have featured silver nanostructures and fluorophores which have been immobilized onto clean glass or quartz surfaces. In this report we show how plastic surfaces can be modified to obtain surface functionality, which in turn allows for silver deposition and therefore metal-enhanced fluorescence of fluorophores positioned above the silver using a protein spacer. Our findings show that plastic substrates are ideal surfaces for metal-enhanced phenomena, producing similar enhancements as compared to clean glass surfaces. Subsequently, we speculate that plastic substrates for MEF will find common place, as compared to the more expensive and less versatile traditional silica based supports.  相似文献   

15.
It is essential for everyone working with experimental science to be certain that their instruments produce reliable results, and for fluorescence lifetime experiments, information about fluorescence lifetime standards is crucial. A large part of the literature on lifetime standards dates back to the 1970s and 1980s, and the use of newer and faster measuring devices may deem these results unreliable. We have tested the three commonly used fluorophores fluorescein, quinine sulfate and green fluorescent protein for their suitability to serve as lifetime standards, especially to be used with two-photon excitation measurements in the time-domain. We measured absorption and emission spectra for the fluorophores to determine optimal wavelengths to use for excitation and detector settings. Fluorescence lifetimes were measured for different concentrations, ranging from 10??3 ??10??5 M, as well as for various solvents. Fluorescein was soluble in both ethanol, methanol and sulfuric acid, while quinine sulfate was only soluble in sulfuric acid. Green fluorescent protein was prepared in a commercial Tris-HCl, EDTA solution, and all three fluorophores produced stable lifetime results with low uncertainties. No siginificant variation with concentration was measured for any of the fluorophores, and all showed single-exponential decays. All lifetime measurements were carried out using two-photon excitation and lifetime data was obtained in the time-domain using time-correlated single-photon counting.  相似文献   

16.
The spectral properties of a novel type of Y-shaped fluorophores consisting of an imidazole ring end-capped with two electron-donating N,N-dimethylaminophenyl groups at positions C4 and C5 and one electron-withdrawing cyano group on the imidazole moiety at position C2 were examined. The π-linker separating the 4,5-bis[4-(N,N-dimethylamino)phenyl]-1H-imidazole donor moiety and the cyano group comprises 1,4-phenylene (1), (E)-phenylethenyl (2), (E)-phenylbuta-1,3-dienyl (3), biphenyl (4), (E)-phenylethenylphenyl (5) and phenylethynylphenyl (6) conjugated paths. The absorption and fluorescence spectra were obtained in toluene, dichloromethane, acetonitrile and methanol and in polymer matrices such as polystyrene (PS), poly(methyl methacrylate) (PMMA) and poly(vinylchloride) (PVC). The most intense absorption bands of fluorophores 1-6 were observed within the range of 283 to 330?nm. Less intense but longer-wavelength absorption bands designated as charge-transfer bands were observed at approximately 380-430?nm depending on the medium. The fluorophores exhibited strong fluorescence in the visible region with a Stokes shift of approximately 4300-5800?cm(-1) in non-polar toluene and polystyrene, whereas very low intensity of fluorescence was observed with a Stokes shift in the 6500-7800?cm(-1) region in polar methanol and acetonitrile. The large Stokes shift indicates a large difference in the spatial arrangement of the chromophore in the absorbing and emitting states. A relatively intense fluorescence (quantum yields of 0.12-0.69) was observed only for derivative 1 in all media except methanol. The fluorophores doped in matrices yielded more intense fluorescence compared with the fluorescence in liquid media. The use of solid polymer matrices lowers the probability of forming non-emissive excited states. The fluorescence lifetimes were short (1-4?ns) for all of the fluorophores in solvents and in polymer matrices.  相似文献   

17.
We present a method for detecting nonmelanoma skin cancers using exogenous fluorescence polarization. We built an automated system that permits exogenous fluorescence polarization imaging. It includes a tunable linearly polarized monochromatic light source and a CCD camera equipped with a rotating linear polarizer and a filter to reject excitation light. Two fluorophores that are retained in tumors, toluidine blue and methylene blue, are employed. We demonstrate that fluorescence polarization imaging can be used for accurate delineation of nonmelanoma cancers. The results suggest that this optical technique may be suitable for real-time noninvasive demarcation of epithelial cancers.  相似文献   

18.
A double immunohistochemical technique for the simultaneous detection of T- and B cells in paraffin-embedded mice tissues have been developed. This procedure is based on using fluorescent nano-crystals (q-dots). The benefit of using q-dots evolves from their unique fluorescence characteristics advantages: such as broad excitation spectrum, narrow emission band and high photo-bleaching threshold compare to organic fluorophores. T cells antigens (CD3) were stained using antibody-coated q-dots with max emission at 655 nm (GαRb-QD655). B cells antigens (CD45R/B220) were stained using streptavidin-coated q-dots with max emission at 585 nm (SA-QD585). The simultaneous detection of T- and B cells was demonstrated in paraffin-embedded lymph node using standard fluorescence microscope.  相似文献   

19.
利用三维荧光光谱(3EEMs)技术,考察了不同氧化还原条件对上覆水体中溶解有机质的三维荧光光谱特征的影响。好氧条件下上覆水体中DOM的荧光指数要高于厌氧条件,说明在不同的氧化还原条件下,上覆水体中DOM来源和组成均存在一定的差异性。上覆水体的三维荧光光谱特征也存在显著差异:好氧条件下,上覆水体中的类蛋白荧光峰强度均高于腐殖质类荧光峰强度,且三维荧光光谱图显示腐殖质类DOM存在氧化降解现象。厌氧条件下,上覆水体中腐殖质类荧光峰的强度随培养天数逐渐增加,当厌氧培养时间为21 d,C和D荧光峰的强度已分别上升至初始的3.51和3.78倍。在不同的氧化还原条件下,类蛋白和类腐殖质类DOM荧光峰位置和强度的变化,表明不同类型DOM的生物可利用性程度和在沉积物-水界面间迁移转化特征的差异性。  相似文献   

20.
We have studied the difference between the fluorescence spectra of the human cornea in vivo under normal conditions and after contact lenses have been worn for different lengths of time, with excitation by emission from a nitrogen laser (337 nm). The most significant sections of the difference spectrum were identified, corresponding to peaks for endogenous fluorophores (NADH and collagen). A high correlation was found between how long the contact lenses have been worn and the fluorescence intensity ratio for wavelengths 460 nm and 410 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号