首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermographic nondestructive testing (NDT) based on the thermal resistance effect of defects is developed for the inspection of delaminated and sandwiched defects embedded in composite structures. The resolution is examined for artificial delaminated defects in carbon-fiber honeycomb structures using conventional infrared radiation heating. The experimental results have demonstrated that radiation heating is effective for revealing defects in the composite structures.An experimental and computational hybrid system is developed for detecting defects in various composite structures. The system consists of an infrared thermal video system which measures the surface temperature distribution of the structure, a computer with a PIP-1024B image board which performs image processing of thermograms, and a HP ink jet XL printer. It is found that this system is readily applicable to the detection of defects located at the interface of the core and skin in honeycomb structures and delaminations in composite materials.  相似文献   

2.
Direct ultrasonic visualization of defects (duvd) is a method of instantaneous ultrasonic imaging in which reflections of repetitive ultrasonic pulses are focused into a transparent medium and made visible by a stroboscopic Schlieren apparatus. An improved system using two polystyrene lenses in water and short pulses of 1.5 MHz ultrasound is described. Resolution of 1 mm both in the direction of the ultrasonic beam and transversely is demonstrated over a 25 x 25 mm2 field. The potential performance is discussed; good resolution can be expected but the sensitivity is about 50 dB short of that of conventional pulse-echo techniques, so that general applications in non-destructuve testing and medicine are ruled out. Uses may exist in short-range underwater work for rapid, low sensitivity inspection of materials.  相似文献   

3.
Imaging of defects in composite structures plays an important role in non-destructive testing (NDT) with elastic waves, i.e., ultrasound. Traditionally the imaging of such defects is performed using the synthetic aperture focusing technique (SAFT) algorithm assuming homogeneous isotropic materials. However, if parts of the structure are inhomogeneous and/or anisotropic, this algorithm fail to produce correct results that are needed in order to asses the lifetime of the part under test. Here we present a modification of this algorithm which enables a correct imaging of defects in inhomogeneous and/or anisotropic composite structures, whence it is termed InASAFT. The InASAFT is based on the exact modelling of the structure in order to account for the true nature of the elastic wave propagation using travel time ray tracing techniques. The algorithm is validated upon several numerical and real life examples yielding satisfactory results for imaging of cracks. The modified algorithm suffers, though, from the same difficulties encountered in the SAFT algorithm, namely “ghost” images and eventual lack of clear focused images. However, these artifacts can be identified using a forward wave propagation analysis of the structure.  相似文献   

4.
Laser generated ultrasound holds substantial promise for use as a tool for defect detection in remote inspection thanks to its ability to produce frequencies in the MHz range, enabling fine spatial resolution of defects. Despite the potential impact of laser generated ultrasound in many areas of science and industry, robust tools for studying the phenomenon are lacking and thus limit the design and optimization of non-destructive testing and evaluation techniques. The laser generated ultrasound propagation in complex structures is an intricate phenomenon and is extremely hard to analyze. Only simple geometries can be studied analytically. Numerical techniques found in the literature have proved to be limited in their applicability, by the frequencies in the MHz range and very short wavelengths. The objective of this research is to prove that by using an explicit integration rule together with diagonal element mass matrices, instead of the almost universally adopted implicit integration rule to integrate the equations of motion in a dynamic analysis, it is possible to efficiently and accurately solve ultrasound wave propagation problems with frequencies in the MHz range travelling in relatively large bodies. Presented results on NDE testing of rails demonstrate that the proposed FE technique can provide a valuable tool for studying the laser generated ultrasound propagation. PACS 02.70.Dh; 43.35.+d; 42.62.-b  相似文献   

5.
The electromagnetic ultrasound is used in the detection of interfaces of the adhesive multilayer structures to solve the unstable coupling problem in ultrasonic testing by traditional piezoelectric transducers. Based on the analysis of the transforming mechanism of electromag-netic ultrasound energy and the resultant dead zone from mutual inductance of the transducer, the wavelet filtering by soft-thresholding and adaptive noise canceling methods are used simul-taneously to the detected electromagnetic ultrasonic signals to overcome the drawbacks of the low signal to noise ratio (SNR) and the wide intrinsic dead zone of the transducer. Processed results in the interface detection of a three layered adhesive sample of steel and rubber materials demonstrate that the wavelet filtering enhances the SNR about 12dB while the adaptive noise canceling narrows the dead zone effectively.  相似文献   

6.
Traditionally the community of scientists involved with ultrasound has been divided broadly into those who use it as a measurement device with no effect on the medium (high frequency low power ultrasound e.g. non-destructive testing) and those who use it to produce physical or chemical effects in a medium (higher power low frequency ultrasound e.g. sonochemistry). Divisions also exist within the broad spectrum of those involved with the latter. In the early days of sonochemistry this did not prove to be a major problem, the subject was new and the field was expanding within the chemistry community. However at a point some years ago Jean-Louis Luche made the very important observation that sonochemistry applications could be subdivided into reactions which were the result of "true" and "false" effects [Synthetic Organic Chemistry by J.-L. Luche, 1998, p. 376]. Essentially these terms referred to real chemical effects induced by cavitation and those effects that could be mainly ascribed to the mechanical impact of bubble collapse. These mechanical effects have not held the interest of synthetic chemists as much as the so-called true ones but nevertheless they are certainly important in areas such as processing. In this paper I will attempt to show that there are links that can be made across many of the ultrasound "disciplines" and that these links can only serve to strengthen research in the general area of power ultrasound. If research on power ultrasound is strong then research into "pure" sonochemistry will also flourish and "false" sonochemistry will be born again as a significant research area.  相似文献   

7.
In the first article of this series it was shown that the use of inverse scattering theory to analyse ultrasound reflections could provide high resolution images of the acoustic impedance profile of the retina. Unlike the retina, most tissue structures of interest, like small tumours and arterial plaque deposits, are shielded from view by intervening layers of tissue of appreciable acoustic impedance and attenuation. By analysing a one-dimensional model for a plaque deposit on the wall of a carotid artery embedded in a 5 cm thick layer of tissue, we demonstrate that a relatively high quality image can be recovered when compensation for the attenuation of the intervening tissue is made. We observe that because of the dearth of low frequency power in the recovered signal of ultrasound transducers, it is important that the field of view imaged is not taken to be too large. We compare the exact iterative distorted wave Born approximation inverse scattering method with the approximate but computationally faster plane wave Born approximation method and find that they give images of comparable quality for this model.  相似文献   

8.
This study presents an inspection system to detect the growth defects of silicon crystals that comprise a CCD camera, an LED light source, and power modulation. The defects on multicrystalline silicon can be observed clearly while the silicon wafer were irradiated by the red LED light at a small lighting angle (i.e., 20–30°). However, the growth defects on monocrystalline silicon wafer were difficult to observe because of it low image intensity. And then, the growth defects image was significantly enhanced when the wafer was illuminated by a white LED (WLED) and rotated at a specific angle (i.e., 23°). The experimental results showed that the WLED illumination system made the growth defects more easily observable than did other LED sources (i.e., red, blue, and green LEDs). In addition, the proposed inspection system can be used for on-line fast detection for quality control of monocrystalline silicon wafer.  相似文献   

9.
Composites, such as glass fiber reinforced polymer (GFRP) and carbon fiber reinforced polymer (CFRP), and adhesive bonding are being increasingly used in fields of aerospace, renewable energy, civil and architecture, and other industries. Flaws and damages are inevitable during either fabrication or lifetime of composites structures or components. Thus, nondestructive testing (NDT) are extremely required to prevent failures and to increase reliability of composite structures or components in both manufacture and in-service inspection. Infrared thermography techniques including pulsed thermography, pulsed phase thermography, and lock-in thermography have shown the great potential and advantages. Besides conventional optical thermography, other sources such as laser, eddy current, microwave, and ultrasound excited thermography are drawing increasingly attentions for composites. In this work, a fully, in-depth and comprehensive review of thermography NDT techniques for composites inspection was conducted based on an orderly and concise literature survey and detailed analysis. Firstly, basic concepts for thermography NDT were defined and introduced, such as volume heating thermography. Next, the developments of conventional optic, laser, eddy current, microwave, and ultrasound thermography for composite inspection were reviewed. Then, some case studies for scanning thermography were also reviewed. After that, the strengths and limitations of thermography techniques were concluded through comparison studies. At last, some research trends were predicted. This work containing critical overview, detailed comparison and extensive list of references will disseminates knowledge between users, manufacturers, designers and researchers involved in composite structures or components inspection by means of thermography NDT techniques.  相似文献   

10.
The durability of cement-based materials with respect to exterior aggressions is one of the current priorities in civil engineering. Depending on their use, the cement-based materials can be exposed to different types of aggressive environments. For instance, damages to concrete structures in contact with a saline environment (sea water on bridges, deicing salts on roads, etc.) are of utmost importance. Upon exposure to saline water, Cl- ions penetrate into the structures and subsequently lead to reinforcement corrosion. Chloride attack is often combined with other aggressive influences such as temperature (e.g., freezing) or the ingress of other ions (e.g., sulfates in sea water). We therefore aim to explore the effect of sodium chloride (NaCl) on the structural chemistry of cement paste. Existing studies about reinforcement corrosion by chloride have focused on the penetration of Cl- ions and the comparison between "free" ions (water-soluble ions) and bound ones. However, little is known about the fixation mechanisms, the localization of Cl in the cement matrix and the structural interaction between Cl and the silicate and aluminate hydrate phases present in cement paste. We present here results of a multinuclear nuclear magnetic resonance study on the fixation of chloride in the hydration products and the characterization of new phases potentially appearing due to chloride ingress.  相似文献   

11.
The interaction of water with solid surfaces: Fundamental aspects   总被引:1,自引:0,他引:1  
The purpose of this review is to compare and discuss recent experimental and theoretical results in the field of H2O-solid interactions. We emphasize studies of low (submonolayer) coverages of water on well-characterized, single-crystal surfaces of metals, semiconductors and oxides. We discuss the factors which influence dissociative versus associative adsorption pathways. When H2O adsorbs molecularly, it tends to form three-dimensional hydrogen-bonded clusters, even at fractional monolayer coverages, because the strength of the attractive interaction between two molecules is comparable to that of the substrate-H2O bond. The template effect of the substrate is important in determining both the local orientation and long-range order of H2O molecules in these clusters. The influence of surface additive atoms (e.g., O, Br, Na, K) and also surface imperfections (e.g. steps and defects) on the surface structure and chemistry of H2O is examined in detail. Some results on single-crystal substrates are compared with earlier measurements of H2O adsorption on high-area materials.  相似文献   

12.
The paper deals with a non-destructive method for characterizing the degraded cover of concrete structures using high-frequency ultrasound. In a preliminary study, the authors emphasized on the interest of using higher frequency Rayleigh waves (within the 0.2-1 MHz frequency band) for on-site inspection of concrete structures with subsurface damage. The present study represents a continuation of the previous work and aims at optimizing the generation and reception of Rayleigh waves into mortar and concrete be means of wedge transducers. This is performed experimentally by checking the influence of the wedge material and coupling agent on the surface wave parameters. The selection of the best combination wedge/coupling is performed by searching separately for the best wedge material and the best coupling material. Three wedge materials and five coupling agents were tested. For each setup the five parameters obtained from the surface wave measurement i.e. the frequency band, the maximal available central frequency, the group velocity error and its standard deviation and finally the error in velocity dispersion characteristic were investigated and classed as a function of the wedge material and the coupling agent. The selection criteria were chosen so as to minimize the absorption of both materials, the randomness of measurements and the systematic error of the group velocity and of dispersion characteristic. Among the three tested wedge materials, Teflon was found to be the best. The investigation on the coupling agent shows that the gel type materials are the best solutions. The "thick" materials displaying higher viscosity were found as the worst. The results show also that the use of a thin plastic film combined with the coupling agent even increases the bandwidth and decreases the uncertainty of measurements.  相似文献   

13.
A new at-wavelength inspection technology to probe nanoscale defects buried underneath Mo/Si multilayers on an extreme ultraviolet (EUV) lithography mask blank has been implemented using EUV photoemission electron microscopy (EUV-PEEM). EUV-PEEM images of programmed defect structures of various lateral and vertical sizes recorded at an ~13.5 nm wavelength show that 35 nm wide and 4 nm high buried line defects are clearly detectable. The imaging technique proves to be sensitive to small phase jumps, enhancing the edge visibility of the phase defects, which is explained in terms of a standing wave enhanced image contrast at resonant EUV illumination.  相似文献   

14.
Electronic speckle pattern interferometry (ESPI) can be a powerful tool for efficient non-destructive testing and evaluation of micro-deformations of masonry materials and structures. Unlike traditional transducers, ESPI requires no direct contact with the object, and the full-field visualisation it offers provides for a better understanding of the surface behaviour. This paper describes an in-plane deformation inspection system which has been built up for an automatic acquisition of interferograms at different stages of a test. The system is applied to the evaluation of some mechanical characteristics of masonry components. Qualitative and quantitative results are obtained and an overall discussion is presented.  相似文献   

15.
以固体火箭发动机中的玻璃纤维复合材料壳体/绝热层试件的脱粘缺陷为研究对象,利用脉冲闪光灯热激励方式对试件进行加热,用红外热像仪实时监测试件的表面温度场,由表面温度差异来判定试件内部缺陷,然后通过对热像图进行图像增强处理和分割以定量识别缺陷。将实验结果与超声C扫描检测结果进行的对比分析表明:红外热像无损检测方法能够快速直观地发现深度5 mm以内、直径10 mm以上的脱粘缺陷,而超声C扫描检测更适合于对特定缺陷进行准确定量检测。  相似文献   

16.
In a preceding paper [3] we have formulated a geometrical theory of structural defects for a very large classe of materials e. g. ordinary crystals, line structured materials as polymers and others. The application to a special kind of material requires a physical interpretation of the geometrical terms for this material. Referring to the papers of ANTHONY [1, 2], we give here a generalization of the geometrical theory of line structures, that is comprising a general internal motion of the material including the motion of defects. In order to do this the theory is to be formulated within anholonimic coordinates, here defined by the Frenets triads of the structural lines, being generally in motion. The geometrical terms for the current of the dislocation of the line structure, the current of the torsion of the lines (without defects) as well as the current of line disclination are explained.  相似文献   

17.
J.A. Ogilvy 《Ultrasonics》1986,24(6):337-347
A model for ultrasonic wave propagation in anisotropic and inhomogeneous materials is applied to the case of ultrasonic inspection of an austenitic V-butt weld manufactured by the downhand Manual Metal Arc technique. We examine the propagation behaviour of waves within the weld region and, in addition, model beam divergence behaviour. From this work we predict directions of low inspection sensitivity and also identify regions of material to which no ultrasound penetrates. The relative merits of the three different wave modes are examined, showing clearly the advantages of horizontally polarized shear waves for austenitic steel inspection. Vertically polarized shear waves are shown to be the least effective for such inspections. We discuss the relevance of this work to the ultrasonic non-destructive testing of austenitic steel components, concluding that care is needed over the choice of wave modes and angles, to ensure sensitive inspection of the whole weld material.  相似文献   

18.
针对工业超声无损检测领域干耦合材料种类匮乏,且声能透射率低的问题,论文在室温硫化硅橡胶基底材料中添加不同成份和配比的纳米颗粒,制备了不同种类的干耦合材料,给出了干耦合条件下超声波的传输模型,得到了声学传输规律,对比分析了干耦合材料种类、厚度、硬度、超声中心频率及载荷因素对声能传输特性的影响。搭建了声学特性测试实验平台,分别对添加氧化铝、铁和二氧化硅纳米颗粒制备的干耦合材料进行了测定,试验结果表明填充二氧化硅质量分数为5%时,所形成的纳米填充硅橡胶的声阻抗提高了13.5%,使用200kPa预载荷对试块测量时回波幅值提高了18.0%,具有良好的声耦合性能。可为实际超声检测时干耦合材料的制备及应用提供参考。  相似文献   

19.
The paper presents a review and comparative analysis of several algorithms for the recognition of crystal structures and defects of various types used in molecular dynamics simulations of materials. A new algorithm called the adaptive template analysis is suggested. Unlike the other algorithms, it is iterative. The algorithms considered were tested in molecular dynamics calculations taking into account temperature changes and high-rate deformation in shock waves.  相似文献   

20.
The large-scale liquid-crystal display (LCD) industry requires an accurate inspection system for identifying defects, as the LCD quality can be drastically degraded because of defects. In particular, the refractive index of LCD panels can be changed by internal micrometer-range substances, which form as a result of defectiveness and the insufficient solidification of industrial liquid resins. Intrinsically, the defect inspection of the raw materials must be performed prior to the LCD manufacturing process. Thus, optical coherence tomography (OCT) based automated fluid-inspection (AFI) methodology was introduced to demarcate and enumerate the defects in industrial liquid resins and the final product (LCD smartphone). The accuracy of the method was enhanced by implementing an intensity-detection algorithm. Subsequently, the optimal solidification rates of liquid resins were investigated using a fluorescence sensor-based ultraviolet hardening method to prevent the formation of defects between the internal layers of the LCD panel. Therefore, AFI can be implemented as an effective and cost-saving method in the smartphone industry for improving the quality of the final product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号