首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the previous paper, we described a series of the 2-arylethenesulfonamide derivatives, a novel class of ETA-selective endothelin (ET) receptor antagonists, including the compounds 1a, b. Compound 1a showed excellent oral antagonistic activities and pharmacokinetic profiles, and the monopotassium salt of 1 (YM-598 monopotassium) is in clinical trials. In this paper, we wish to report the investigation of the further details of structure-activity relationships (SARs) of the 2-phenylethenesulfonamide region in 1a. It was found that methyl substitutions at the 2-, 4- and 6-positions of the phenyl group in 1a led to the discovery of the ET(A)/ET(B) mixed antagonist (6s) with an IC50 of 2.2 nM for the ET(A) receptor. We also found that introduction of an ethyl group to the 1-position of the ethenyl group in 1a gave the ET(A) selective antagonist (6u) with an oral endothelin antagonistic activity in rats.  相似文献   

2.
A novel series of 3-(2-substituted-3-oxo-2,3-dihydropyridazin-6-yl)-2-phenylpyrazolo[1,5-a]pyridines (5-38) were synthesized and evaluated for their in vitro adenosine A1 and A(2A) receptor binding activities, and in vitro metabolism by rat liver in order to search for orally active compounds. Most of the test compounds were potent adenosine A1 receptor antagonists with high A1 selectivity and the A1 affinity and A1 selectivity of carbonyl derivatives (5-11) was particularly high. In particular, compound 7 was an extremely potent and selective adenosine A1 antagonist with high A1 selectivity (Ki=0.026 nM, A(2A)/A1=5400). In terms of metabolic stability, 2-oxopropyl (5), 2-hydroxypropyl (12), N-methylacetamide (16), 2-(piperidin-1-yl)ethyl (28) and 1-methylpiperidin-4-yl (32, FR194921) were the most stable compounds in this series of analogues. Further in vivo evaluation indicated that compounds 5, 13, 17, 28 and 32 were detected in both plasma and brain after oral administration in rats. In particular, 32 displayed good plasma and brain concentrations (dose: 32 mg/kg (n=3); after 30 min, plasma conc.=3390+/-651nM, brain conc.=3670+/-496nM; after 60min, plasma conc.=1580+/-348nM, brain conc.=2143+/-434nM), and a good brain/plasma ratio (1.11+/-0.060 (30min), 1.39+/-0.172 (60min)). As a result, we could show that 32 is a good candidate for an orally active adenosine A1 receptor antagonist with high blood-brain barrier permeability and good bioavailability (Ki=6.6nM, A(2A)/A1=820, BA=60.6+/-4.9% (32 mg/kg)).  相似文献   

3.
Half-sandwich complexes of the type [(RCOCp)M(CO)(3)] with M = Re and (99(m))Tc were synthesized from [M(OH(2))(3)(CO)(3)](+) in water. The R group can be an organic residue or a receptor binding biomolecule with a spacer to cyclopentadienyl (Cp). This provides a general route to Cp complexes of technetium without the need for starting from [TcBr(CO)(5)]. The X-ray structure of [(C(6)H(5)CH(2)COC(5)H(4))Tc(CO)(3)] has been elucidated. The compound crystallizes in the monoclinic space group P2(1)/c with a = 16.1454(9), b = 7.6300(6), and c = 12.3922(7) A and beta = 107.792(6) degrees. We have chosen a serotonergic receptor ligand (WAY) as an example for the derivatization of Cp with a bioactive molecule. WAY is linked to Cp by an aliphatic chain of variable length. The half-sandwich complexes were prepared from water and organic solvents. The structure of [(WAY4-Cp)Re(CO)(3)] could be elucidated. The compound crystallizes in the monoclinic space group P2(1)/c with a = 15.7112(6), b = 6.8775(3), and c = 25.5217(12) A and beta = 103.778(5) degrees. Quantification of inhibition constants gave a clear structure-activity relationship. A single methylene group between the receptor binding site and the half-sandwich complex gave an IC(50) of 217 nM for HT(1A), whereas a butylene linker resulted in retention of the inhibition constant with an IC(50) of 6 nM with respect to underivatized WAY. For use as radiopharmaceuticals, the compounds have also been prepared with (99m)Tc in quantitative yield.  相似文献   

4.
The closo-[B12H12-n(OH)n]2- (n = 1-4) ions have been synthesized by the reaction of cesium dodecahydro-closo-dodecaborate(2-), Cs21, with aqueous sulfuric acid. Variation of the reaction temperature, time, and acid concentration results in the stepwise introduction of from one to four hydroxyl groups. Each individual hydroxylation step proceeds regioselectively, affording only one isomer per step. Further substitution of the hydroxylated cluster preferentially takes place at a B-H vertex meta to a B-OH vertex. The closo-[B12H12-n(OH)n]2- (n = 1-4) species, designated 2-5, respectively, are characterized by one- and two-dimensional 11B NMR spectroscopy, IR spectroscopy, and high-resolution fast atom bombardment (FAB) mass spectrometry. A rationale that qualitatively explains the influence of the hydroxyl group on the chemical shifts of the individual boron vertices is developed. Furthermore, the solid state structures of closo-[B12H11(OH)]2-, 2, and closo-1,7-[B12H10(OH)2]2-,3, are determined by X-ray diffraction. Crystallographic data are as follows: For [MePPh3](2)2, monoclinic, space group P2(1)/n, a = 890.1(5) pm, b = 1814(1) pm, c = 1270.5(7) pm, beta = 101.66(2) degrees, Z = 2, R = 0.055; for [MePPh3](2)3, monoclinic, space group P2(1)/n, a = 887.6(4) pm, b = 1847.2(8) pm, c = 1271.1(5) pm, beta = 101.17(1) degrees, Z = 2, R = 0.065. In addition, synthetic routes to O-derivatized species of the anions 2-5 such as closo-[B12H11(OTiCpCl2)]2-, 7, closo-1,7-[B12H10(OTiCpCl2)2]2-, 8, closo-1,7,9-[B12H9(OTiCpCl2)3]2-, 9, closo-[B12H11(OCONHPh)]2-, 10, and closo-1,7-[B12H10(OSO2Me)2]2-, 11, are described. The crystal structures of 7 and 11 are determined by single-crystal X-ray diffraction. Crystallographic data are as follows: For [MePPh3](2)7, monoclinic, space group Cc, a = 2530.5(2) pm, b = 1653.3(1) pm, c = 1281.3(1) pm, beta = 118.79(2) degrees, Z = 4, R = 0.085; for [HPy](2)11, monoclinic, space group P2(1)/n, a = 1550.9(8) pm, b = 993.1(5) pm, c = 1726.5(9) pm, beta = 112.36(2) degrees, Z = 4, R = 0.061.  相似文献   

5.
The reaction of the bismuth silanolates [Bi(OSiR2R')3] (R = R' = Me, Et, iPr; R = Me, R' = tBu) with water has been studied. Partial hydrolysis gave polynuclear bismuth-oxo clusters whereas amorphous bismuth-oxo(hydroxy) silanolates were obtained when an excess of water was used in the hydrolysis reaction. The metathesis reaction of BiCl3 with NaOSiMe3 provided mixtures of heterobimetallic silanolates. The molecular structures of [Bi18Na4O20(OSiMe3)18] (2), [Bi33NaO38(OSiMe3)24].3 C7H8 (3.3 C7H8), [Bi50Na2O64(OH)2(OSiMe3)22].2 C7H8.2H2O (4.2 C7H8.2 H2O), [Bi4O2(OSiEt3)8] (5), [Bi9O7(OSiMe3)13].0.5 C7H8 (6. 0.5C7H8), [Bi18O18(OSiMe3)18)].2C7H8 (7. 2C7H8) and [Bi20O18(OSiMe3)24].3C7H8 (8.3C7H8) are presented and compared with the solid-state structures of [Bi22O26(OSiMe2tBu)14] (9) and beta-Bi2O3. Compound 2 crystallises in the triclinic space group P1 with the lattice constants a = 17.0337(9), b = 19.5750(14), c = 26.6799(16) A, alpha = 72.691(4), beta = 73.113(4) and gamma = 70.985(4) degrees ; compound 3.3C7H8 crystallises in the monoclinic space group P2(1)/n with the lattice constants a = 20.488(4), b = 22.539(5), c = 26.154(5) A and beta = 100.79(3) degrees ; compound 4.2C7H82 H2O crystallises in the monoclinic space group P2(1)/n with the lattice constants a = 20.0518(12), b = 24.1010(15), c = 27.4976(14) A and beta = 103.973(3) degrees ; compound 5 crystallises in the monoclinic space group P2(1)/c with the lattice constants a = 25.256(5), b = 15.372(3), c = 21.306(4) A and beta = 113.96(3) degrees ; compound 6.0.5C7H8 crystallises in the triclinic space group P1 with the lattice constants a = 15.1916(9), b = 15.2439(13), c = 22.487(5) A, alpha = 79.686(3), beta = 74.540(5) and gamma = 66.020(4) degrees ; compound 7.2C7H8 crystallises in the triclinic space group P1 with the lattice constants a = 14.8295(12), b = 16.1523(13), c = 18.4166(17) A, alpha = 75.960(4), beta = 79.112(4) and gamma = 63.789(4) degrees ; and compound 8.3C7H8 crystallises in the triclinic space group P1 with the lattice constants a = 17.2915(14), b = 18.383(2), c = 18.4014(18) A, alpha = 95.120(5), beta = 115.995(5) and gamma = 106.813(5) degrees . The molecular structures of the bismuth-rich compounds are related to the CaF2-type structure. Formally, the hexanuclear [Bi6O8]2+ fragment might be described as the central building unit, which is composed of bismuth atoms placed at the vertices of an octahedron and oxygen atoms capping the trigonal faces. Depending on the reaction conditions and the identity of R, the thermal decomposition of the hydrolysis products [Bi(n)O(l)(OH)(m-)(OSiR3)(3n-(2l-m))] gives alpha-Bi2O3, beta-Bi2O3, Bi12SiO20 or Bi4Si3O12.  相似文献   

6.
Yeh CY  Chiang YL  Lee GH  Peng SM 《Inorganic chemistry》2002,41(16):4096-4098
The one-electron oxidized linear pentanuclear nickel complexes [Ni(5)(tpda)(4)(H(2)O)(BF(4))](BF(4))(2) (1) and [Ni(5)(tpda)(4)(SO(3)CF(3))(2)](SO(3)CF(3)) (2) have been synthesized by reacting the neutral compound [Ni(5)(tpda)(4)Cl(2)] with the corresponding silver salts. These compounds have been characterized by various spectroscopic techniques. Compound 1 crystallizes in the monoclinic space group P2(1)/n with a = 15.3022(1) A, b = 31.0705(3) A, c = 15.8109(2) A, beta = 92.2425(4) degrees, V = 7511.49(13) A(3), Z = 4, and compound 2 crystallizes in the monoclinic space group C2/c with a = 42.1894(7) A, b = 17.0770(3) A, c = 21.2117(4) A, beta = 102.5688(8) degrees, V = 14916.1(5) A(3), Z = 8. X-ray structural studies reveal an unsymmetrical Ni(5) unit for both compounds 1 and 2. Compounds 1 and 2 show stronger Ni-Ni interactions as compared to those of the neutral compounds.  相似文献   

7.
Single crystals of Cf(IO(3))(3) (1) were synthesized by the hydrothermal reaction of CfCl(3) and H(5)IO(6), and the structure was determined with single-crystal X-ray diffraction. This structural determination of 1 represents the first for a trivalent californium compound containing oxygen coordination. This compound has been further characterized with the use of Raman spectroscopy and emission spectroscopy. Crystallographic data: Cf(IO(3))(3), monoclinic, space group P2(1)/n, a = 8.7994(10) A, b = 5.9388(7) A, c = 15.157(2) A, beta = 96.833(2) degrees , V = 786.43(16) A(3), Z = 4 (T = 295 K).  相似文献   

8.
A new layered titanoniobate, LiTiNbO5, an n = 2 member of the A(x)M(2n)O(4n+2) family, has been synthesized using a molten salt reaction between HTiNbO5 and an eutectic "LiOH/LiNO3". This compound crystallizes in the P2(1)/m space group with a = 6.41 A, b = 3.77 A, c = 8.08 A, and beta = 92 degrees . It exhibits |TiNbO5|(infinity) layers similar to HTiNbO5, but differs from the latter by a "parallel configuration" of its |TiNbO6|(infinity) ribbons between the two successive layers. The topotactic character of the reaction suggests that exfoliation plays a prominent role in the synthesis of this new form. This new phase intercalates reversibly 0.8 lithium through a first-order transformation leading to a capacity of 94 mAh/g at a potential of 1.67 V vs Li/Li+.  相似文献   

9.
A new member of the aluminum hydride family, CaAlH5, is formed during the decomposition of Ca(AlH4)2. The crystal structure of this new compound was calculated by density functional theory band-structure calculations and confirmed by X-ray powder diffraction analysis. The structure crystallizes in space group P2(1)/n (No. 14), with a = 8.3797(9) angstroms, b = 6.9293(8) angstroms, c = 9.8138(11) angstroms, beta = 93.78(1) degrees, and Z = 8.  相似文献   

10.
Two new one-dimensional compounds, trans-[Mn(4-bzpy)2(N(CN)2)2]n (1) and cis-[Mn(bpy)(N(CN)2)2]n (2), have been synthesized and studied from a magnetic point of view (4-bzpy = 4-benzoylpyridine; bpy = 2,2'-bipyridyl). The crystal structures of 1 and 2 have been solved. Compound 1 crystallizes in the monoclinic system, P2(1)/n group, a = 6.374(2) A, b = 7.584(2) A, c = 26.766(5) A, beta = 91.87 degrees, and Z = 2, whereas compound 2 crystallizes in the monoclinic system, C2/c group, a = 6.707(2) A, b = 17.188(5) A, c = 13.096(5) A, beta = 90.54 degrees, and Z = 4. The two compounds consist of chains with double mu 1,5-dicyanamide bridges between neighboring manganese(II) atoms. The weak antiferromagnetic coupling found for the two compounds (J = -0.3 cm-1 for 1 and -0.4 cm-1 for 2) has been studied by MO analysis, and the superexchange pathway through the mu 1,5-(NCNCN-) bridge has been compared with the shorter mu 1,3-(NNN-).  相似文献   

11.
The ground state electronic structure of the mixed-valence systems [Ni(2)(napy)(4)X(2)](BPh(4)) (napy=1,8-naphthyridine; X=Cl, Br, I) was studied with combined experimental (X-ray diffraction, temperature dependence of the magnetic susceptibility, and high-field EPR spectroscopy) and theoretical (DFT) methods. The zero-field splitting (zfs) ground S=3/2 spin state is axial with /D/ approximately 3 cm(-1). The iodide derivative was found to be isostructural with the previously reported bromide complex, but not isomorphous. The compound crystallizes in the monoclinic system, space group P2(1)/n, with a=17.240(5), b=26.200(5), c=11.340(5) A, beta=101.320(5) degrees. DFT calculations were performed on the S=3/2 state to characterize the ground state potential energy surface as a function of the nuclear displacements. The molecules can thus be classified as Class III mixed-valence compounds with a computed delocalization parameter, B=3716, 3583, and 3261 cm(-1) for the Cl, Br, and I derivatives, respectively.  相似文献   

12.
Six new actinide metal thiophosphates have been synthesized by the reactive flux method and characterized by single-crystal X-ray diffraction: Cs(8)U(5)(P(3)S(10))(2)(PS(4))(6) (I), K(10)Th(3)(P(2)S(7))(4)(PS(4))(2) (II), K(5)U(PS(4))(3) (III), K(5)Th(PS(4))(3) (IV), Rb(5)Th(PS(4))(3) (V), and Cs(5)Th(PS(4))(3) (VI). Compound I crystallizes in the monoclinic space group P2(1)/c with a = 33.2897(1) A, b = 14.9295(1) A, c = 17.3528(2) A, beta = 115.478(1) degrees, Z = 8. Compound II crystallizes in the monoclinic space group C2/c with a = 32.8085(6) A, b = 9.0482(2) A, c = 27.2972(3) A, beta = 125.720(1) degrees, Z = 8. Compound III crystallizes in the monoclinic space group P2(1)/c with a = 14.6132(1) A, b = 17.0884(2) A, c = 9.7082(2) A, beta = 108.63(1) degrees, Z = 4. Compound IV crystallizes in the monoclinic space group P2(1)/n with a = 9.7436(1) A, b = 11.3894(2) A, c = 20.0163(3) A, beta = 90.041(1) degrees, Z = 4, as a pseudo-merohedrally twinned cell. Compound V crystallizes in the monoclinic space group P2(1)/c with a = 13.197(4) A, b = 9.997(4) A, c = 18.189(7) A, beta = 100.77(1) degrees, Z = 4. Compound VI crystallizes in the monoclinic space group P2(1)/c with a = 13.5624(1) A, b = 10.3007(1) A, c = 18.6738(1) A, beta = 100.670(1) degrees, Z = 4. Optical band-gap measurements by diffuse reflectance show that compounds I and III contain tetravalent uranium as part of an extended electronic system. Thorium-containing compounds are large-gap materials. Raman spectroscopy on single crystals displays the vibrational characteristics expected for [PS(4)](3)(-), [P(2)S(7)](4-), and the new [P(3)S(10)](5)(-) building blocks. This new thiophosphate building block has not been observed except in the structure of the uranium-containing compound Cs(8)U(5)(P(3)S(10))(2)(PS(4))(6).  相似文献   

13.
Reactions of two new tripodal ligands 1,3,5-tris(1-imidazolyl)benzene (4) and 1,3-bis(1-imidazolyl)-5-(imidazol-1-ylmethyl)benzene (5) with metal [Ag(I), Cu(II), Zn(II), Ni(II)] salts lead to the formation of novel two-dimensional (2D) metal-organic frameworks [Ag(2)(4)(2)][p-C(6)H(4)(COO)(2)].H(2)O (6), [Ag(4)]ClO(4) (7), [Cu(4)(2)(H(2)O)(2)](CH(3)COO)(2).2H(2)O (8), [Zn(4)(2)(H(2)O)(2)](NO(3))(2) (9), [Ni(4)(2)(N(3))(2)].2H(2)O (10), and [Ag(5)]ClO(4) (11). All the structures were established by single-crystal X-ray diffraction analysis. Crystal data for 6: monoclinic, C2/c, a = 23.766(3) A, b = 12.0475(10) A, c = 13.5160(13) A, beta = 117.827(3) degrees, Z = 4. For compound 7: orthorhombic, P2(1)2(1)2(1), a = 7.2495(4) A, b = 12.0763(7) A, c = 19.2196(13) A, Z = 4. For compound 8: monoclinic, P2(1)/n, a = 8.2969(5) A, b = 12.2834(5) A, c = 17.4667(12) A, beta = 96.5740(10) degrees, Z = 2. For compound 9: monoclinic, P2(1)/n, a =10.5699(3) A, b = 11.5037(3) A, c = 13.5194(4) A, beta = 110.2779(10) degrees, Z = 2. For compound 10: monoclinic, P2(1)/n, a = 9.8033(3) A, b = 12.1369(5) A, c = 13.5215(5) A, beta = 107.3280(10) degrees, Z = 2. For compound 11: monoclinic C2/c, a = 18.947(2) A, b = 9.7593(10) A, c = 19.761(2) A, beta = 97.967(2) degrees, Z = 8. Both complexes 6 and 7 are noninterpenetrating frameworks based on the (6, 3) nets, and 8, 9 and 10 are based on the (4, 4) nets while complex 11 has a twofold parallel interpenetrated network with 4.8(2) topology. It is interesting that, in complexes 6,7, and 11 with three-coordinated planar silver(I) atoms, each ligand 4 or 5 connects three metal atoms, while in the case of complexes 8, 9, and 10 with six-coordinated octahedral metal atoms, each ligand 4 only links two metal atoms, and another imidazole nitrogen atom of 4 did not participate in the coordination with the metal atoms in these complexes. The results show that the nature of organic ligand and geometric needs of metal atoms have great influence on the structure of metal-organic frameworks.  相似文献   

14.
The coordination chemistry of the oxadiazole-containing rigid bidentate ligands 2,5-bis(4-pyridyl)-1,3,4-oxadiazole (L1), 2,5-bis(3-pyridyl)-1,3,4-oxadiazole (L2), and 2,5-bis(3-aminophenyl)-1,3,4-oxadiazole (L3) with inorganic Ag(I) salts has been investigated. Four new coordination polymers (1, 2, 3, and 5) and one new bimetallic macrocyclic supramolecular complex (4) were synthesized from solution reactions of L1-L3 with inorganic Ag(I) salts, respectively. Compounds [[Ag(L1)]SbF(6)](n) (1) (1, monoclinic, P2(1)/c, a = 6.6846(4) A, b = 27.1113(15) A, c = 8.6802(5) A, beta = 94.1080(10) degrees, Z = 4) and [[Ag(L1)]PF(6)](n) (2) (2, monoclinic, P2(1)/c, a = 6.6753(3) A, b = 27.2824(14) A, c = 8.2932(4) A, beta = 94.6030(10) degrees, Z = 4) were obtained from the reactions of L1 with AgSbF(6) and AgPF(6) in a CH(2)Cl(2)/CH(3)OH mixed solvent system, respectively. Compounds 1 and 2 are isostructural and feature a novel two-dimensional zeolite-like net with two different individual rings. [[Ag(L2)]SbF(6)](n) (3) (3, monoclinic, P2(1)/c, a = 5.5677(3) A, b = 17.3378(9) A, c = 15.6640(8) A, beta = 94.4100(10) degrees, Z = 2) and [Ag(2)(L2)(2)](SbF(6))(2) (4) (4, triclinic, P1, a = 8.7221(5) A, b = 9.2008(6) A, c = 10.7686(7) A, alpha = 70.6270(10) degrees, beta = 75.7670(10) degrees, gamma = 73.7560(10) degrees, Z = 1) were obtained from one-pot reaction of L2 with AgSbF(6) in a CH(2)Cl(2)/CH(3)OH mixed solvent system. Compound 3 features a one-dimensional chain pattern, while compound 4 adopts a novel bimetallic macrocyclic structural motif which consists of Ag(2)(L2)(2) ringlike units (crystallographic dimensions, 8.06 x 7.42 A(2)). [[Ag(L3)]SO(3)CF(3)](n) (5) is generated from L3 and AgSO(3)CF(3) in a CH(2)Cl(2)/CH(3)OH mixed solvent system and crystallizes in the unusual space group Pbcn, with a = 9.8861(5) A, b = 20.2580(10) A, c = 17.5517(8) A, Z = 8. It adopts novel two-dimensional sheets that are cross-linked to each other by strong interlayer N-H...O hydrogen bonding interactions into a novel H-bonded three-dimensional network.  相似文献   

15.
A new aroyl hydrazone, N-2-hydroxy-4-methoxyacetophenone-N'-4-nitrobenzoyl hydrazine was prepared by the condensation reaction of 2-hydroxy-4-methoxyacetophenone and 4-nitrobenzoyl hydrazine. Characterization of the compound was done by elemental analysis and electronic, infrared and NMR spectral analyses. The complete structural assignment of the compound was done by NMR studies by using COSY homonuclear and HSQC heteronuclear techniques. The crystal and molecular structure was determined by single crystal X-ray diffraction studies: crystallized in the monoclinic system, space group P2(1)/n, Z=4, a=7.3343(9)A, b=20.3517(9)A, c=10.1375(5)A, alpha=90.00 degrees, beta=95.735(7) degrees and gamma=90.00 degrees. From the crystal structure, it is concluded that the compound exists as the keto isomer in the solid state. There is a completely extended conformation in the central part of the molecule C5C8N1N2C10O2 with an E configuration at the double bond of the hydrazinic bridge.  相似文献   

16.
Breeze SR  Wang S 《Inorganic chemistry》1996,35(11):3404-3408
A new mixed valence copper complex Cu(II)(Me(5)dien)Cl(2)(Cu(I)Cl) (2) was obtained from the reaction of CuCl with Cu(II)(Me(5)dien)Cl(2) (1) in acetonitrile. The structures of 1 and 2 have been determined by single-crystal X-ray diffraction analyses. Compound 1 crystallizes in the monoclinic space group P2(1)/n with a = 8.374(5) ?, b = 17.155(3) ?, c = 23.806(5) ?, beta = 94.40(4) degrees, Z = 8, and V = 3398(1) ?(3) while compound 2 crystallizes in orthorhombic space group Pbcn with a = 14.71(1) ?, b = 16.06(2) ?, c = 13.38(1) ?, Z = 8, and V = 3159(5) ?. The Cu(II)(Me(5)dien)Cl(2) unit in both compounds has a similar distorted square-pyramidal geometry. The Cu(I)Cl moiety in 2 is attached to the Cu(II) unit via two bridging chlorine atoms and has a distorted trigonal planar geometry. UV-vis and EPR spectroscopic studies and molecular orbital calculations established the presence of significant perturbation of the Cu(I)Cl unit to the electronic structure of the Cu(II) ion in compound 2.  相似文献   

17.
Introduction Over the past decades, polyoxometalates(POMs)have been attracting extensive interestowing to the widerange of their topological properties and potential appli-cations in catalysis, photochemistry, electrochromism,and magnetism[1,2]. Meanwhile, owing to the potentialapplication of polyoxometalaes as anticancer and antivi-ral drugs, their complexes have attracted increasing in-terest of both inorganic chemists and biochemists[3]. Itis well known that polyoxometalates are excellent …  相似文献   

18.
Byun Y  Min D  Do J  Yun H  Do Y 《Inorganic chemistry》1996,35(13):3981-3989
Synthesis, structures, and unusual solution dynamic processes of d(10) metal complexes of hexakis(3,5-dimethylpyrazolyl)cyclotriphosphazene (L) are reported. Reaction systems with three MX(n):L mole ratios (MX(n) = d(10) metal halide) in CH(2)Cl(2) have resulted in the formation of [ICu(&mgr;,eta(3),eta(3)-L)CuI] (1), [Cl(2)Zn(&mgr;,eta(2),eta(3)-L)ZnCl(2)] (2), [Cl(2)Cd(&mgr;,eta(3),eta(3)-L)CdCl(2)] (3), and [(eta(3)-L)HgCl(2)] (4). These compounds were characterized by single crystal X-ray diffraction studies, and crystallographic data are given in the order of compound: crystal system; space group; unit cell parameters; Z; unique data (I > 2sigma(I)); R(1). 1.0.5CH(2)Cl(2): monoclinic; P2(1)/c; a = 8.268(4) ?; b = 22.365(5) ?; c = 23.325(8) ?, beta = 93.06(1) degrees; 4; 5736; 4.82. 2.CH(3)CN: monoclinic; P2(1)/c; a = 17.021(3) ?; b = 12.161(2) ?; c = 23.608(5) ?; beta = 107.72(1) degrees; 4; 5469; 3.16. 3.CH(2)Cl(2): monoclinic; P2(1)/n; a = 18.585(5) ?; b = 17.585(4) ?; c = 14.404(3) ?; beta = 102.71(2) degrees; 4; 3814; 3.65. The structure of 4 was attempted but resulted in data of low precision. Reaction of L with CuI and ZnCl(2) in an equimolar ratio afforded [ICu(&mgr;,eta(3),eta(3)-L)ZnCl(2)] (5) which crystallizes in monoclinic space group P2(1)/n with a = 22.876(5) ?, b = 21.594(4) ?, c = 9.177(2) ?, beta = 93.54(2) degrees, Z = 4, and R(1) = 7.00 for 3806 (I > 2sigma(I)) data. In all cases, metal halide centers except the Td zinc site in 2 are coordinated by L via a kappa(3)N binding core consisting of two nongeminal pyrazolyl nitrogen atoms and one phosphazene ring nitrogen atom. The eta(2)-N(2) coordination in 2 involves two geminal pyrazolyl nitrogen atoms. Factors which govern the nuclearity of the complex were partially demonstrated. The intermetallic distances in dinuclear metallophosphazenes range from 6.790 to 7.195 ?. The solution behavior of five compounds was studied by variable temperature (31)P{(1)H}, (1)H, and (113)Cd FT NMR spectroscopy. Compounds 1 and 4 are associated with fluxional motions involving A(2)B low-temperature limit spectrum while compounds 2 and 5 show solvent-dependent dynamic processes with ABX and A(2)B low-temperature limit spectral patterns. Compounds 3 constitutes a fluxional system involving three A(2)B species. Accounts of solution NMR spectra were attempted by using PANIC, by assuming the formation of new solution metallophosphazene species and by considering several types of dynamic processes such as a ring-around type hopping motion for the kappa(3)N metal site, a Td conformational change for the geminal pyrazolyl kappa(2)N metal site, and a wigwag motion for the nongeminal pyrazolyl kappa(2)N metal unit.  相似文献   

19.
Two new polymeric manganese-azido systems with formula Cs(n)-[[Mn(N3)3]n] (1) and [[N(C2H5)4]n][[Mn2-(N3)5(H2O)]n] (2) were synthesised and structurally characterised. Compound 1 crystallises in the P2(1)/n group and consists of a three-dimensional system with end-to-end and end-on azido bridges with the caesium atoms in the holes of the net. Magnetically, compound 1 is a rare case of a three-dimensional network with alternate ferro-antiferromagnetic interactions. Compound 2 crystallises in the P1 group and consists of double chains of manganese atoms bridged by end-on and, the exceptional, (mu-1,1,1)-azido bridges. Magnetically, compound 2 shows net ferromagnetic behaviour. Exact fit of the magnetic data was performed for the two compounds by means of Monte Carlo simulations based on the Metropolis algorithm on sets of 10 x 10 x 10 (1) and 1 x 1 x 320 (2) S = 5/2 classical spin centres.  相似文献   

20.
The reaction of manganese(II) and pyridine derivatives such as 3-methylpyridine (3-Mepy) and 3,4-dimethylpyridine (3,4-Dmepy) led to the new one-dimensional systems trans-[Mn(3-Mepy)2(N3)2]n (1) and trans-[Mn(3,4-Dmepy)2(N3)2]n (2). Compound 1 crystallizes in the monoclinic system, space group P2(1)/n, a = 11.201(3) A, b = 14.499(4) A, c = 14.308(4) A, Z = 6, and compound 2 crystallizes in the triclinic system, space group P1, a = 11.502(4) A, b = 14.246(5) A, c = 16.200(8) A, Z = 6. The two compounds show the same general one-dimensional arrangement of double azido bridges between neighboring manganese atoms with the unprecedented -Mn-(mu(1,3)-N3)2-Mn-(mu(1,3)-N3)2-Mn-(mu(1,1)-N3)2-Mn- sequence. Susceptibility and magnetization measurements reveal a ferrimagnetic-like behavior derived from the topology of the chain. A model of the Heisenberg chain, comprising classical spins coupled through alternating exchange interactions J1J1J2... is proposed to describe the magnetic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号