首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 INTRODUCTION Hydrothermal synthesis of Mo(V) phosphates has allowed various structures, all characterized by the presence of identical clusters with the composition Mo12MP8X62 (X = O, OH) to be stabilized[1~6]. Many Mo(V) phosphates with such clusters have been iso- lated to date. The first compound was discovered by Haushalter and Lai[1] for M = Na with the formula (PPh4)2[(H3O)2NaMo6P4O24(OH)7]?5H2O. Recently, a second type of structure has been observed for M = Na (Na8(…  相似文献   

2.
A series of models for the active site (H-cluster) of the iron-only hydrogenase enzymes (Fe-only H2-ases) were prepared. Treatment of MeCN solutions of Fe2(SR)2(CO)6 with 2 equiv of Et4NCN gave [Fe2(SR)2(CN)2(CO)4](2-) compounds. IR spectra of the dicyanides feature four nu(CO) bands between 1965 and 1870 cm(-1) and two nu(CN) bands at 2077 and 2033 cm(-1). For alkyl derivatives, both diequatorial and axial-equatorial isomers were observed by NMR analysis. Also prepared were a series of dithiolate derivatives (Et4N)2[Fe2(SR)2(CN)2(CO)4], where (SR)2 = S(CH2)2S, S(CH2)3S. Reaction of Et4NCN with Fe2(S-t-Bu)2(CO)6 gave initially [Fe2(S-t-Bu)2(CN)2(CO)4](2-), which comproportionated to give [Fe2(S-t-Bu)2(CN)(CO)5](-). The mechanism of the CN(-)-for-CO substitution was probed as follows: (i) excess CN(-) with a 1:1 mixture of Fe2(SMe)2(CO)6 and Fe2(SC6H4Me)2(CO)6 gave no mixed thiolates, (ii) treatment of Fe2(S2C3H6)(CO)6 with Me3NO followed by Et4NCN gave (Et4N)[Fe2(S2C3H6)(CN)(CO)5], which is a well-behaved salt, (iii) treatment of Fe2(S2C3H6)(CO)6 with Et4NCN in the presence of excess PMe3 gave (Et4N)[Fe2(S2C3H6)(CN)(CO)4(PMe3)] much more rapidly than the reaction of PMe3 with (Et4N)[Fe2(S2C3H6)(CN)(CO)5], and (iv) a competition experiment showed that Et4NCN reacts with Fe2(S2C3H6)(CO)6 more rapidly than with (Et4N)[Fe2(S2C3H6)(CN)(CO)5]. Salts of [Fe2(SR)2(CN)2(CO)4](2-) (for (SR)2 = (SMe)2 and S2C2H4) and the monocyanides [Fe2(S2C3H6)(CN)(CO)5](-) and [Fe2(S-t-Bu)2(CN)(CO)5](-) were characterized crystallographically; in each case, the Fe-CO distances were approximately 10% shorter than the Fe-CN distances. The oxidation potentials for Fe2(S2C3H6)(CO)4L2 become milder for L = CO, followed by MeNC, PMe3, and CN(-); the range is approximately 1.3 V. In water,oxidation of [Fe2(S2C3H6)(CN)2(CO)4](2-) occurs irreversibly at -0.12 V (Ag/AgCl) and is coupled to a second oxidation.  相似文献   

3.
Tan G  Zhu H 《Inorganic chemistry》2011,50(15):6979-6986
The dinuclear NNP-ligand copper(I) complex [o-N═CH(C(4)H(3)N)-PPh(2)C(6)H(4)](2)Cu(2) (1) has been synthesized by the reaction of (CuMes)(4) (Mes = 2,4,6-Me(3)C(6)H(2)) with N-((1H-pyrrol-2-yl)-methylene)-2-(diphenylphosphino)benzenamine under an elimination of MesH. Further reaction of 1 with an excess of S(8) produced a mononuclear Cu(II) complex [o-N═CH(C(4)H(3)N)-P(S)Ph(2)C(6)H(4)](2)Cu (5) and CuS. CuS was identified by Raman spectroscopy and 1 and 5 were clearly confirmed by X-ray crystallography. The N-heterocyclic carbene was employed to react with 1 to give a mononuclear [o-N═CH(C(4)H(3)N)-PPh(2)C(6)H(4)]Cu{C[N(iPr)CMe](2)} (2). The reactions of 2 were carried out with (1)/(8), (2)/(8), and (5)/(8) equiv of S(8), leading to compounds [o-N═CH(C(4)H(3)N)-P(S)Ph(2)C(6)H(4)]Cu{C[N(iPr)CMe](2)} (3), [o-N═CH(C(4)H(3)N)-P(S)Ph(2)C(6)H(4)]Cu (4), and 5 respectively, in which CuS was generated in the third reaction and S═C[N(iPr)CMe](2) in the latter two reactions. The clean confirmation of 2-4 demonstrates a stepwise reaction process of 1 with S(8) to 5 and CuS and the N-heterocyclic carbene acts well as a trapping agent.  相似文献   

4.
Efficient protocols for the syntheses of well-defined, solvent-free cations of the large alkaline-earth (Ae) metals (Ca, Sr, Ba) and their smaller Zn and Mg analogues have been designed. The reaction of 2,4-di-tert-butyl-6-(morpholinomethyl)phenol ({LO(1)}H), 2-{[bis(2-methoxyethyl)amino]methyl}-4,6-di-tert-butylphenol ({LO(2)}H), 2-[(1,4,7,10-tetraoxa-13-azacyclopentadecan-13-yl)methyl]-4,6-di-tert-butylphenol ({LO(3)}H), and 2-[(1,4,7,10-tetraoxa-13-azacyclo-pentadecan-13-yl)methyl]-1,1,1,3,3,3-hexafluoropropan-2-ol ({RO(3)}H) with [H(OEt(2))(2)](+)[H(2)N{B(C(6)F(5))(3)}(2)](-) readily afforded the doubly acidic pro-ligands [{LO(1)}HH](+)[X](-) (1), [{LO(2)}HH](+)[X](-) (2), [{LO(3)}HH](+)[X](-) (3), and [{RO(3)}HH](+)[X](-) (4) ([X](-) = [H(2)N{B(C(6)F(5))(3)}(2)](-)). The addition of 2 to Ca[N(SiMe(3))(2)](2)(THF)(2) and Sr[N(SiMe(3))(2)](2)(THF)(2) yielded [{LO(2)}Ca(THF)(0.5)](+)[X](-) (5) and [{LO(2)}Sr(THF)](+)[X](-) (6), respectively. Alternatively, 5 could also be prepared upon treatment of {LO(2)}CaN(SiMe(3))(2) (7) with [H(OEt(2))(2)](+)[X](-). Complexes [{LO(3)}M](+)[X](-) (M = Zn, 8; Mg, 9; Ca, 10; Sr, 11; Ba, 12) and [{RO(3)}M](+)[X](-) (M = Zn, 13; Mg, 14; Ca, 15; Sr, 16; Ba, 17) were synthesized in high yields (70-90%) by reaction of 3 or 4 with the neutral precursors M[N(SiMe(3))(2)](2)(THF)(x) (M = Zn, Mg, x = 0; M = Ca, Sr, Ba, x = 2). All compounds were fully characterized by spectroscopic methods, and the solid-sate structures of compounds 1, 3, 7, 8, 13, 14, {15}(4)·3CD(2)Cl(2), {16}(4)·3CD(2)Cl(2), and {{17}(4)·EtOH}·3CD(2)Cl(2) were determined by X-ray diffraction crystallography. Whereas the complexes are monomeric in the case of Zn and Mg, they form bimetallic cations in the case of Ca, Sr and Ba; there is no contact between the metal and the weakly coordinating anion. In all metal complexes, the multidentate ligand is κ(6)-coordinated to the metal. Strong intramolecular M···F secondary interactions between the metal and F atoms from the ancillary ligands are observed in the structures of {15}(4)·3CD(2)Cl(2), {16}(4)·3CD(2)Cl(2), and {{17}(4)·EtOH}·3CD(2)Cl(2). VT (19)F{(1)H} NMR provided no direct evidence that these interactions are maintained in solution; nevertheless, significant Ae···F energies of stabilization of 25-26 (Ca, Ba) and 40 kcal·mol(-1) (Sr) were calculated by NBO analysis on DFT-optimized structures. The identity and integrity of the cationic complexes are preserved in solution in the presence of an excess of alcohol (BnOH, (i)PrOH) or L-lactide (L-LA). Efficient binary catalytic systems for the immortal ring-opening polymerization of L-LA (up to 3,000 equiv) are produced upon addition of an excess (5-50 equiv) of external protic nucleophilic agents (BnOH, (i)PrOH) to 8-12 or 13-17. PLLAs with M(n) up to 35,000 g·mol(-1) were produced in a very controlled fashion (M(w)/M(n) ≈ 1.10-1.20) and without epimerization. In each series of catalysts, the following order of catalytic activity was established: Mg ? Zn < Ca < Sr ≈ Ba; also, Ae complexes supported by the aryloxide ligand are more active than their parents supported by the fluorinated alkoxide ancillary, possibly owing to the presence of Ae···F interactions in the latter case. The rate law -d[L-LA]/dt = k(p)·[L-LA](1.0)·[16](1.0)·[BnOH](1.0) was established by NMR kinetic investigations, with the corresponding activation parameters ΔH(++) = 14.8(5) kcal·mol(-1) and ΔS(++) = -7.6(2.0) cal·K(-1)·mol(-1). DFT calculations indicated that the observed order of catalytic activity matches an increase of the L-LA coordination energy onto the cationic metal centers with parallel decrease of the positive metal charge.  相似文献   

5.
The reactions of phenylaminobis(phosphonite), PhN{P(OC6H4OMe-o)2}2 (1) (PNP), with [AuCl(SMe2)] in appropriate ratios, afford the bi- and mononuclear complexes, [(AuCl)2(micro-PNP)] (2) and [(AuCl)(PNP)]2 (3) in good yield. Treatment of 2 with 2 equiv of AgX (X = OTf or ClO4) followed by the addition of 1 or 2,2'-bipyridine affords [Au2(micro-PNP)2](OTf)2 (4) and [Au2(C10H8N2)2(micro-PNP)](ClO4)2 (5), respectively. Similarly, the macrocycles [Au4(C4H4N2)2(micro-PNP)2](ClO4)4 (6), [Au4(C10H8N2)2(micro-PNP)2](ClO4)4 (7), and [Au6(C3H3N3)2(micro-PNP)3](ClO4)6 (8) are obtained by treating 2 with pyrazine, 4,4'-bipyridine, or 1,3,5-triazine in the presence of AgClO 4. The reaction of 1 with AgOTf in a 1:2 molar ratio produces [Ag2(micro-OTf)2(micro-PNP)] (9). The displacement of triflate ions in 9 by 1 leads to a disubstituted derivative, [Ag2(micro-PNP)3](OTf)2 (10). The equimolar reaction of 1 with AgClO4 in THF affords [Ag2(C4H8O)2(micro-PNP)2](ClO4)2 (11). Treatment of 1 with AgClO4 followed by the addition of 2,2'-bipyridine affords a discrete binuclear complex, [Ag2(C10H8N2)2(micro-PNP)](ClO4)2 (12), whereas similar reactions with 4,4'-bipyridine or pyrazine produce one-dimensional zigzag Ag (I) coordination polymers, [Ag2(C10H8N2)(micro-ClO4)(ClO4)(micro-PNP)]n (13) and [Ag2(C4H4N2)(micro-ClO4)(ClO4)(micro-PNP)]n (14) in good yield. The nature of metal-metal interactions in compounds 2, 4, 5, and 12 was analyzed theoretically by performing HF and CC calculations. The structures of the complexes 2, 4, 5, 7, 9, 12, and 14 are confirmed by single crystal X-ray diffraction studies.  相似文献   

6.
Dimethylzinc reacts with an excess of N-2-pyridylaniline 6 to give the homoleptic species, Zn[PhN(2-C(5)H(4)N)](2) 8. Single crystal X-ray diffraction reveals a solid-state dimer based on an 8-membered (NCNZn)(2) core motif. Zn[CyN(2-C(5)H(4)N)]Me (Cy =c-C(6)H(11)) 10, prepared by the combination of ZnMe(2) with the corresponding cyclohexyl-substituted pyridylamine, is also dimeric in the solid state but reveals a central (ZnN)(2) metallacycle. Employment of (p-Tol)NH(2-C(5)H(4)N)(p-Tol = 4-MeC(6)H(4)) 11 yielded the tris(zinc) adduct Zn(3)[(p-Tol)N(2-C(5)H(4)N)](4)Me(2) 12, which incorporates a central chiral molecule of 'Zn[(p-Tol)N(2-C(5)H(4)N)](2)' 12a, that bridges two 'Zn[(p-Tol)N(2-C(5)H(4)N)]Me' 12b units. A similar trimetallic structure is noted when the pyridylaniline substrate 11 is replaced with the bicyclic guanidine 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine (hppH), affording Zn(3)(hpp)(4)Me(2) 13. Spectroscopic studies point to retention of the solid-state structure of in hydrocarbon solution. Reaction of 13 with dimesityl borinic acid, Mes(2)BOH (Mes = mesityl), affords Zn(3)(hpp)(4)(OBMes(2))(2) 14 in which the trimetallic core is retained. This reactivity is in contrast to the closely related reaction of dimeric Zn[Me(2)NC[N(i)Pr](2)]Me 15 with Mes(2)BOH, which yielded Zn[Me(2)NC[N(i)Pr](2)][OBMes(2)].Me(2)NC[N(i)Pr][NH(i)Pr] 16 as a result of protonation at the guanidine ligand in addition to the Zn-Me bond.  相似文献   

7.
The reaction of the in situ generated cyclooctene iridium(I) derivative trans-[IrCl(C8H14)(PiPr3)2] with benzene at 80 degrees C gave a mixture of the five-coordinate dihydrido and hydrido(phenyl) iridium(III) complexes [IrH2(Cl)(PiPr3)2] 2 and [IrH(C6H5)(Cl)(PiPr3)2] 3 in the ratio of about 1 : 2. The chloro- and fluoro-substituted arenes C6H5X (X = Cl, F), C6H4F2 and C6H4F(CH3) reacted also by C-H activation to afford the corresponding aryl(hydrido) iridium(III) derivatives [IrH(C6H4X)(Cl)(PiPr3)2] 7, 8, [IrH(C6H3F2)(Cl)(PiPr3)2] 9-11 and [IrH[C6H3F(CH3)](Cl)(PiPr3)2] 12, 13, respectively. The formation of isomeric mixtures had been detected by 1H, 13C, 19F and 31P NMR spectroscopy. Treatment of 3 and 7-13 with CO gave the octahedral carbonyl iridium(III) complexes [IrH(C6H3XX')(Cl)(CO)(PiPr3)2] 5, 14-20 without the elimination of the arene. The reactions of trans-[IrCl(C8H14)(PiPr3)2] with aryl ketones C6H5C(O)R (R = Me, Ph), aryl ketoximes C6H5C(NOH)R (R = Me, Ph) and benzaloxime C6H5C(NOH)H resulted in the formation of six-coordinate aryl(hydrido) iridium(III) compounds 21-25 with the aryl ligand coordinated in a bidentate kappa2-C,O or kappa2-C,N fashion. With C6H5C(O)NH2 as the substrate, the two isomers [IrH[kappa2-N,O-NHC(O)C6H5](Cl)(PiPr3)2] 26 and [IrH[kappa2-C,O-C6H4C(O)NH2](Cl)(PiPr3)2] 27 were prepared stepwise. Treatment of trans-[IrCl(C8H14)(PiPr3)2] with benzoic acid gave the benzoato(hydrido) complex [IrH[kappa2-O,O-O2CC6H5](Cl)(PiPr3)2] 29 which did not rearrange to the kappa2-C,O isomer.  相似文献   

8.
The orthopalladation of iminophosphoranes [R(3)P=N-C(10)H(7)-1] (R(3) = Ph(3) 1, p-Tol(3) 2, PhMe(2) 3, Ph(2)Me 4, N-C(10)H(7)-1 = 1-naphthyl) has been studied. It occurs regioselectively at the aryl ring bonded to the P atom in 1 and 2, giving endo-[Pd(μ-Cl)(C(6)H(4)-(PPh(2=N-1-C(10)H(7))-2)-κ-C,N](2) (5) or endo-[Pd(μ-Cl)(C(6)H(3)-(P(p-Tol)(2)=N-C(10)H(7)-1)-2-Me-5)-κ-C,N](2) (6), while in 3 the 1-naphthyl group is metallated instead, giving exo-[Pd(μ-Cl)(C(10)H(6)-(N=PPhMe(2))-8)-κ-C,N](2) (7). In the case of 4, orthopalladation at room temperature affords the kinetic exo isomer [Pd(μ-Cl)(C(10)H(6)-(N=PPh(2)Me)-8)-κ-C,N](2) (11exo), while a mixture of 11exo and the thermodynamic endo isomer [Pd(μ-Cl)(C(6)H(4)-(PPhMe=N-C(10)H(7)-1)-2)-κ-C,N](2) (11endo) is obtained in refluxing toluene. The heating in toluene of the acetate bridge dimer [Pd(μ-OAc)(C(10)H(6)-(N=PPh(2)Me)-8)-κ-C,N](2) (13exo) promotes the facile transformation of the exo isomer into the endo isomer [Pd(μ-OAc)(C(6)H(4)-(PPhMe=N-C(10)H(7)-1)-2)-κ-C,N](2) (13endo), confirming that the exo isomers are formed under kinetic control. Reactions of the orthometallated complexes have led to functionalized molecules. The stoichiometric reactions of the orthometallated complexes [Pd(μ-Cl)(C(10)H(6)-(N=PPhMe(2))-8)-κ-C,N](2) (7), [Pd(μ-Cl)(C(6)H(4)-(PPh(2)[=NPh)-2)](2) (17) and [Pd(μ-Cl)(C(6)H(3)-(C(O)N=PPh(3))-2-OMe-4)](2) (18) with I(2) or with CO results in the synthesis of the ortho-halogenated compounds [PhMe(2)P=N-C(10)H(6)-I-8] (19), [I-C(6)H(4)-(PPh(2)=NPh)-2] (21) and [Ph(3)P=NC(O)C(6)H(3)-I-2-OMe-5] (23) or the heterocycles [C(10)H(6)-(N=PPhMe(2))-1-(C(O))-8]Cl (20), [C(6)H(5)-(N=PPh(2)-C(6)H(4)-C(O)-2]ClO(4) (22) and [C(6)H(3)-(C(O)-1,2-N-PPh(3))-OMe-4]Cl (24).  相似文献   

9.
The reaction of [Mo(3)S(4)(H(2)O)(9)](4+) (1) with [(CpRhCl(2))(2)] afforded a novel rhodium-molybdenum cluster, [{Mo(3)RhCpS(4)(H(2)O)(7)(O)}(2)](8+) (2). X-ray structure analysis of [2](pts)(8).14H(2)O (pts(-) = CH(3)C(6)H(4)SO(3)(-)) has revealed the existence of a new oxo-bridged twin cubane-type core, (Mo(3)RhCpS(4))(2)(O)(2). The high affinity of the CpRh group for sulfur atoms in 1 seems to be the main driving force for this reaction. The strong Lewis acidity of the CpRh group in intermediate A, [Mo(3)RhCpS(4)(H(2)O)(9)](6+), caused a release of proton from one of the water molecules attached to the molybdenum atoms to give intermediate B, [Mo(3)RhCpS(4)(H(2)O)(8)(OH)](5+). The elimination of two water molecules from two intermediate B molecules, followed by the deprotonation reaction of hydroxo bridges, generated the twin cubane-type cluster 2. The formal oxidation states of rhodium and molybdenum atoms are the same before and after the reaction (i.e., Mo(IV)(3), Rh(III)). The Mo-O-Mo moieties in [2](pts)(8).14H(2)O are nearly linear with a bond angle of 164.3(3) degrees, and the basicity of the bridging oxygen atoms seems to be weak. For this reason, protonation at the bridging oxygen atoms does not occur even in a strongly acidic aqueous solution. The binding energy values of Mo 3d(5/2), Rh 3d(5/2), and C 1s obtained from X-ray photoelectron spectroscopy measurements for [2](pts)(8).14H(2)O are 229.8, 309.3, and 285 eV, respectively. The XPS measurements on the Rh 3d(5/2) binding energy indicate that the oxidation state of Rh is 3+. The binding energy of Mo 3d(5/2) (229.8 eV) compares with that observed for [1](pts)(4).7H(2)O (230.7 eV, Mo 3d(5/2)). A lower energy shift (0.9 eV) is observed in the binding energy of Mo 3d(5/2) for [2](pts)(8).14H(2)O. This energy shift may correspond to the coordination of an oxygen atom having a negative charge to the molybdenum atom.  相似文献   

10.
The reactions of the bulky amino-bis(phenol) ligand Me(2)NCH(2)CH(2)N[CH(2)-3,5-Bu(t)(2)-C(6)H(2)OH-2](2)(1-H(2)) with Zn[N(SiMe(3))(2)](2)(4), [Mg[N(SiMe(3))(2)](2)](2)(5) and Ca[N(SiMe(3))(2)](2)(THF)(2)(6) yield the complexes 1-Zn, 1-Mg and 1-Ca in good yields. The X-ray structure of 1-Ca showed the complex to be dimeric, with calcium in a distorted octahedral coordination geometry. Five of the positions are occupied by an N(2)O(3) donor set, while the sixth is taken up by an intramolecular close contact to an o-Bu(t) substituent, a rare case of a Ca...H-C agostic interaction (Ca...H distances of 2.37 and 2.41 Angstroms). Another sterically hindered calcium complex, Ca[2-Bu(t)-6-(C(6)F(5)N=CH)C(6)H(3)O](2)(THF)(2).(C(7)H(8))(2/3)(7), was prepared by reaction of 6 with the iminophenol 2-Bu(t)-6-(C(6)F(5)N=CH)C(6)H(3)OH (3-H). According to the crystal structure 7 is monomeric and octahedral, with trans THF ligands. The complex Ti[N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)O-2](2)[CH(2)CH(2)NMe(2)]](OPr(i))(2)(2-Ti) was prepared by treatment of Ti(OPr(i)(4)) with the new amino-bis(phenol) Me(2)NCH(2)CH(2)N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)OH-2](2)(2-H(2)). The reduction of 2-Ti with sodium amalgam gave the titanium(III) salt Ti[N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)O-2](2)[CH(2)CH(2)NMe(2)]](OPr(i))(2).Na(THF)(2)(8). A comparison of the X-ray structures of 2-Ti and 8 showed that the additional electron in 8 significantly reduced the intensity of the pi-bonding from the oxygen atoms of the isopropoxide groups to titanium. 1-Ca and 8 were active initiators for the ring-opening polymerisation of epsilon-caprolactone (up to 97% conversion of 200 equivalents in 2 hours) and yielded polymers with narrow molecular weight distributions.  相似文献   

11.
Reaction of Zn(OAc)(2).2H2O (OAc = acetate) with LH2 in THF followed by reaction with Co2(CO)8 yields the novel supramolecular assembly Zn3L2(OAc)2[Co2(CO)6](4).0.5CH2Cl2, which was characterized by X-ray diffraction (LH2 = (CH2)3(N=CH-2-OH-5-C identical to CSiMe3C6H3)2 or N,N'-propylenebis(2-hydroxy-5-trimethylsilylethynl-1-aldimine).  相似文献   

12.
[PPh4]2[M(C2N2S2)2](M = Pt, Pd) and [Pt(C2N2S2)(PR3)2](PR3= PMe2Ph, PPh3) and [Pt(C2N2S2)(PP)](PP = dppe, dppm, dppf) were all obtained by the reaction of the appropriate metal halide containing complex with potassium cyanodithioimidocarbonate. The dimeric cyanodithioimidocarbonate complexes [[Pt(C2N2S2)(PR3)]2](PR3 = PMe2Ph), [M[(C2N2S2)(eta5-C5Me5)]2](M = Rh, Ir)and [[Ru(C2N2S2)(eta6-p-MeC6H4iPr)]2] have been synthesised from the appropriate transition metal dimer starting material. The cyanodithioimidocarbonate ligand is S,S and bidentate in the monomeric complexes with the terminal CN group being approximately coplanar with the CS2 group and trigonal at nitrogen thus reducing the planar symmetry of the ligand. In the dimeric compound one of the sulfur atoms bridges two metal atoms with the core exhibiting a cubane-like geometry.  相似文献   

13.
A new molybdenum phosphate [Zn(Mov6P4O31H10)2(C4H14N3)2]·2C4H13N3·8H2O 1 (C4H13N3 = diethylenetriamine) has been synthesized under hydrothermal condition. Single-crystal X-ray diffraction reveals that compound 1 crystallizes in the monoclinic, space group P21/n, a =13.1679(3), b = 22.1240(6), c = 13.6146(3) (A), β = 103.4847(7)°, V = 3856.95(16) (A)3,C16H90N12O70P8ZnMo12, Mr = 3035.41, Z = 2, Dc = 2.614 g/cm3, μ = 2.483 mm-1, F(000) = 2968, S = 1.014, the final R = 0.0196 and wR = 0.0506 for 7486 observed reflections (I > 2σ(Ⅰ)). Compound 1 consists of two identical rings of six edge-sharing MoO6 octahedra interconnected by one ZnO6 octahedron, whereas the PO4 tetrahedra which share their apices with the MoO6 octahedra are only located on one side of each Mo6 ring. The 2-charge of polyanion [Zn(Mov6P4O31H10)2]2- unit is compensated in the crystal by two mono-protonated diethylenetriamines (C4H14N3)+. By hydrogen bonding interactions the polyanion of compound 1 is interconnected to form pseudo three dimensional molybdophosphate. Other characterizations by elemental analyses, IR spectrum and fluorescent spectrum are also described.  相似文献   

14.
A new series of 5-(4'-substituted)phenylazo-8-hydroxyquinolines (H[L-R]; R = N(CH(3))(2), C(2)H(5), n-C(4)H(9), C(CH(3))(3), H, and F, ) has been prepared and the corresponding Zn[L-R](2) (1a-6a) and Al[L-R](3) (1b-6b) complexes successfully synthesized. These compounds have been studied in order to design new molecular materials with enhanced electron transport properties. The obtained species have been extensively characterized by absorption and emission spectra and by cyclic voltammetric measurements. Experimental and computational results show that the Zn[L-N(CH(3))(2)].2H(2)O (1a) and Al[L-N(CH(3))(2)](1b) complexes only feature luminescence (at 620 and 600 nm), respectively. The unique effects, which are induced by the N=N-C(6)H(4)-N(CH(3))(2) group, are further proved by a reversible electron transfer process detected by cyclic voltammetry. These outcomes, discussed on the basis of theoretical calculations performed on the (H[L-N(CH3)2])-, H[L-N(CH3)2] and (H[L-N(CH3)(2)])+ species, suggest that metal complexes formed by 5-(4'-N,N-dimethylamino)phenylazo-8-hydroxyquinoline should be considered as electron transport materials suitable for applications in photonic devices.  相似文献   

15.
Several new diorganodiselenides containing (imino)aryl groups, [2-(RN[double bond, length as m-dash]CH)C(6)H(4)](2)Se(2) [R = Me(2)NCH(2)CH(2) (4), O(CH(2)CH(2))(2)NCH(2)CH(2) (5), PhCH(2) (6), 2',6'-(i)Pr(2)C(6)H(3) (7)] were obtained by reacting [2-{(O)CH}C(6)H(4)](2)Se(2) (3) with RNH(2). Treatment of the diselenides 6 and 7 with stoichiometric amounts of K-selectride or Na resulted in isolation of the selenolates K[SeC(6)H(4)(CH[double bond, length as m-dash]NCH(2)Ph)-2] (9) and Na[SeC(6)H(4)(CH[double bond, length as m-dash]NC(6)H(3)(i)Pr(2)-2',6')-2] (10), respectively. The reaction of potassium selenolates with anhydrous ZnCl(2) (2:1 molar ratio) gave Zn[SeC(6)H(4)(CH=NCH(2)Ph)-2](2) (11) and Zn[SeC(6)H(4)(CH[double bond, length as m-dash]NC(6)H(3)(i)Pr(2)-2',6')-2](2) (12). When the dark green solution obtained from diselenide 7 and an excess of Na (after removal of the unreacted metal) was reacted with anhydrous ZnCl(2) a carbon-carbon coupling reaction occurred and the 9,10-(2',6'-(i)Pr(2)C(6)H(3)NH)(2)C(14)H(10) (8) species was obtained. The compounds were investigated in solution by multinuclear NMR ((1)H, (13)C, (77)Se, including 2D and variable temperature experiments) and by mass spectrometry. The molecular structures of 6, 8, 11 and 12 were established by single-crystal X-ray diffraction. All compounds are monomeric in the solid state. In the diselenide 6 the (imino)aryl group acts as a (C,N)-ligand resulting in a distorted T-shaped coordination geometry of type (C,N)SeX (X = Se). For the zinc complexes 11 and 12 the (Se,N) chelate pattern of the selenolato ligands results in tetrahedral Zn(Se,N)(2) cores.  相似文献   

16.
Zinc complexes of three new amide-appended ligands have been prepared and isolated. These complexes, [(dpppa)Zn](ClO4)2 (4(ClO4)2; dpppa = N-((N,N-diethylamino)ethyl)-N-((6-pivaloylamido-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine), [(bdppa)Zn](ClO4)2 (6(ClO4)2; bdppa = N,N-bis((N,N-diethylamino)ethyl)-N-((6-pivaloylamido-2-pyridyl)methyl)amine), and [(epppa)Zn](ClO4)2 (8(ClO4)2; epppa = N-((2-ethylthio)ethyl)-N-((6-pivaloylamido-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine), have been characterized by X-ray crystallography (4(ClO4)2 and 8(ClO4)2), 1H and 13C NMR, IR, and elemental analysis. Treatment of 4(ClO4)2 or 8(ClO4)2 with 1 equiv of Me4NOH.5H2O in methanol-acetonitrile (5:3) results in amide methanolysis, as determined by the recovery of primary amine-appended forms of the chelate ligand following removal of the zinc ion. These reactions proceed via the initial formation of a deprotonated amide intermediate ([(dpppa-)Zn]ClO4 (5) and [(epppa-)Zn]ClO4 (9)) which in each case has been isolated and characterized (1H and 13C NMR, IR, elemental analysis). Treatment of 6(ClO4)2 with Me4NOH.5H2O in methanol-acetonitrile results in the formation of a deprotonated amide complex, [(bdppa-)Zn]ClO4 (7), which was isolated and characterized. This complex does not undergo amide methanolysis after prolonged heating in a methanol-acetonitrile mixture. Kinetic studies and construction of Eyring plots for the amide methanolysis reactions of 4(ClO4)2 and 8(ClO4)2 yielded thermodynamic parameters that provide a rationale for the relative rates of the amide methanolysis reactions. Overall, we propose that the mechanistic pathway for these amide methanolysis reactions involves reaction of the deprotonated amide complex with methanol to produce a zinc methoxide species, the reactivity of which depends, at least in part, on the steric hindrance imparted by the supporting chelate ligand. Amide methanolysis involving a zinc complex supported by a N2S2 donor chelate ligand (3(ClO4)2) is more complicated, as in addition to the formation of a deprotonated amide intermediate free chelate ligand is present in the reaction mixture.  相似文献   

17.
We present in this paper the structure resolution of a fluorinated inorganic-organic compound--Zn(3)Al(2)F(12)·[HAmTAZ](6)--by SMARTER crystallography, i.e. by combining powder X-ray diffraction crystallography, NMR crystallography and chemical modelling of crystal (structure optimization and NMR parameter calculations). Such an approach is of particular interest for this class of fluorinated inorganic-organic compound materials since all the atoms have NMR accessible isotopes ((1)H, (13)C, (15)N, (19)F, (27)Al, (67)Zn). In Zn(3)Al(2)F(12)·[HAmTAZ](6), (27)Al and high-field (19)F and (67)Zn NMR give access to the inorganic framework while (1)H, (13)C and (15)N NMR yield insights into the organic linkers. From these NMR experiments, parts of the integrant unit are determined and used as input data for the search of a structural model from the powder diffraction data. The optimization of the atomic positions and the calculations of NMR parameters ((27)Al and (67)Zn quadrupolar parameters and (19)F, (1)H, (13)C and (15)N isotropic chemical shifts) are then performed using a density functional theory (DFT) based code. The good agreement between experimental and DFT-calculated NMR parameters validates the proposed optimized structure. The example of Zn(3)Al(2)F(12)·[HAmTAZ](6) shows that structural models can be obtained in fluorinated hybrids by SMARTER crystallography on a polycrystalline powder with an accuracy similar to those obtained from single-crystal X-ray diffraction data.  相似文献   

18.
Solvothermal reaction of [WS4]2-with CuCN and trithiocyanuric acid(L1) in orga-nic solvents gave rise to a new W/Cu/S polymer with a 2D anionic network,namely [Et4N]2[WS4Cu3(C3N3S3H1.5)2](1).The anionic layer of 1 is constructed by the T-shaped {WS4Cu3} subunits as nodes and L1 as linkers and features a(4,4) topology.Both 1 and its isomorphous compound [Et4N]2[MoS4Cu3(C3N3S3H1.5)2](2) have been fully characterized by X-ray crystal analysis,IR and microanalyses.Compounds 1 and 2 show optical transitions with band gaps of 2.17 and 1.84 eV,respectively.  相似文献   

19.
Pyruvate formate-lyase activating enzyme (PFL-AE) is a representative member of an emerging family of enzymes that utilize iron-sulfur clusters and S-adenosylmethionine (AdoMet) to initiate radical catalysis. Although these enzymes have diverse functions, evidence is emerging that they operate by a common mechanism in which a [4Fe-4S](+) interacts with AdoMet to generate a 5'-deoxyadenosyl radical intermediate. To date, however, it has been unclear whether the iron-sulfur cluster is a simple electron-transfer center or whether it participates directly in the radical generation chemistry. Here we utilize electron paramagnetic resonance (EPR) and pulsed 35 GHz electron-nuclear double resonance (ENDOR) spectroscopy to address this question. EPR spectroscopy reveals a dramatic effect of AdoMet on the EPR spectrum of the [4Fe-4S](+) of PFL-AE, changing it from rhombic (g = 2.02, 1.94, 1.88) to nearly axial (g = 2.01, 1.88, 1.87). (2)H and (13)C ENDOR spectroscopy was performed on [4Fe-4S](+)-PFL-AE (S = (1)/(2)) in the presence of AdoMet labeled at the methyl position with either (2)H or (13)C (denoted [1+/AdoMet]). The observation of a substantial (2)H coupling of approximately 1 MHz ( approximately 6-7 MHz for (1)H), as well as hyperfine-split signals from the (13)C, manifestly require that AdoMet lie close to the cluster. (2)H and (13)C ENDOR data were also obtained for the interaction of AdoMet with the diamagnetic [4Fe-4S](2+) state of PFL-AE, which is visualized through cryoreduction of the frozen [4Fe-4S](2+)/AdoMet complex to form the reduced state (denoted [2+/AdoMet](red)) trapped in the structure of the oxidized state. (2)H and (13)C ENDOR spectra for [2+/AdoMet](red) are essentially identical to those obtained for the [1+/AdoMet] samples, showing that the cofactor binds in the same geometry to both the 1+ and 2+ states of PFL-AE. Analysis of 2D field-frequency (13)C ENDOR data reveals an isotropic hyperfine contribution, which requires that AdoMet lie in contact with the cluster, weakly interacting with it through an incipient bond/antibond. From the anisotropic hyperfine contributions for the (2)H and (13)C ENDOR, we have estimated the distance from the closest methyl proton of AdoMet to the closest iron of the cluster to be approximately 3.0-3.8 A, while the distance from the methyl carbon to the nearest iron is approximately 4-5 A. We have used this information to construct a model for the interaction of AdoMet with the [4Fe-4S](2+/+) cluster of PFL-AE and have proposed a mechanism for radical generation that is consistent with these results.  相似文献   

20.
The dithiosalicylidenediamine Ni II complexes [Ni(L)] (R=tBu, R'=CH2C(CH3)2CH2 1, R'=C6H4 2; R=H, R'=CH2C(CH3)2CH2 3, R'=C6H4 4) have been prepared by transmetallation of the tetrahedral complexes [Zn(L)] (R=tBu, R'=CH2C(CH3)2CH2 7, R'=C6H4 8; R=H, R'=CH2C(CH3)2CH2 9, R'=C6H4 10) formed by condensation of 2,4-di-R-thiosalicylaldehyde with diamines H2N-R'-NH2 in the presence of Zn II salts. The diamagnetic mononuclear complexes [Ni(L)] show a distorted square-planar N2S2 coordination environment and have been characterized by 1H- and 13C NMR and UV/Vis spectroscopies and by single-crystal X-ray crystallography. Cyclic voltammetry and coulombic measurements have established that complexes 1 and 2, incorporating tBu functionalities on the thiophenolate ligands, undergo reversible one-electron oxidation processes, whereas the analogous redox processes for complexes 3 and 4 are not reversible. The one-electron oxidized species, 1+ and 2+, can be generated quantitatively either electrochemically or chemically with 70 % HClO4. EPR and UV/Vis spectroscopic studies and supporting DFT calculations suggest that the SOMOs of 1+ and 2+ possess thiyl radical character, whereas those of 1(py)2 + and 2(py)2 + possess formal Ni III centers. Species 2+ dimerizes at low temperature, and an X-ray crystallographic determination of the dimer [(2)2](ClO4)2.2 CH2Cl2 confirms that this dimerization involves the formation of a S-S bond (S...S=2.202(5) A).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号