首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phase behavior of the glycerol monooleate (GMO)-sodium cholate-water (or 0.9 wt% NaCl) system has been examined in the solvent-rich part, using small-angle X-ray scattering and conventional methods. Addition of cholate up to 7% of the total amphiphile swells the cubic phase of the binary GMO-water system so that it takes up almost 70% of water in the salt-free case and 55% in salt. With more bile salt the lamellar phase also appears highly swollen (up to 85% in water, 75% in brine). In the salt solution a small isotropic L3-phase region replaces the lamellar phase at a solvent content of about 79%. The lamellar phase can accept only about 0.2 cholate molecule per GMO, in both water and brine, and a phase with globular micelles (L1) follows and dominates the diagram. No threadlike micelles appear in this system. Investigation of the particle structures with cryo-transmission electron microscopy (TEM) in dilute systems (99% solvent) show globular micelles and coexisting vesicles and globular micelles. In the presence of salt, dilution of the L3 phase results in dispersed globular particles with an irregular internal morphology that suggests they are a dispersed L3 phase. These particles coexist with faceted particles having an inner structure giving a hexagonal pattern in projection, suggested to derive from the cubic phase. The cubic phase in the salt-free systems did not give dispersions stable enough for cryo-TEM examination. Copyright 1999 Academic Press.  相似文献   

2.
In an attempt to form HII mesophases at room temperature we prepared lyotropic liquid crystals with two surfactants of the same lipophilic tails (glycerol monooleate, GMO, and oleyl lactate, OL) but differing in the size and charge of the headgroups.Increasing OL concentration significantly affected the hydration of the headgroups and subsequently the lipids packing. At low OL content the cubic mesophase was formed, while at higher OL contents the formation of hexagonal mesophase was favored. It was assumed that OL competed on the water binding, tuning the headgroups’ curvature and the packing parameter inducing the formation of reverse hexagonal mesophase. It was detected that cubic mesophase transformed upon heating to hexagonal structures. The hexagonal mesophases, which were formed both immediately after preparation and after aging, remained stable at elevated temperatures.α-Chymotrypsinogen was solubilized into the obtained LLCs at relatively high concentration (up to 1 wt%). The lattice parameter of the host LLCs exhibited a decrease as a function of the protein content. This process was assigned to partial dehydration of the GMO polar moieties in favor to CTA hydration.Generally speaking, the present study indicated that adding anionic to nonionic lipid is highly beneficial to gain additional compositional and structural characteristics of LLCs.  相似文献   

3.
We studied the effect of a model electrolytic drug on intermolecular interactions, conformational changes, and phase transitions in structured discontinuous cubic QL lyotropic liquid crystals. These changes were due to competition with hydration of the lipid headgroups. Structural changes of the phase induced by solubilization loads of sodium diclofenac (Na-DFC) were investigated by directly observing the water, ethanol, and Na-DFC components of the resulting phases using 2H and 23Na NMR. Na-DFC interacted with the surfactant glycerol monoolein (GMO) at the interface while interfering with the mesophase curvature and also competed with hydration of the surfactant headgroups. Increasing quantities of solubilized Na-DFC promoted phase transitions from cubic phase (discontinuous (QL) and bicontinuous (Q)) into lamellar structures and subsequently into a disordered lamellar phase. Quadrupolar coupling of deuterated ethanol by 2H NMR showed that it is located near the headgroups of the lipid and apparently is hydrogen bonded to the GMO headgroups. A phase transition between two lamellar phases (L alpha to L alpha*) was seen by 23Na NMR of Na-DFC at a concentration where the characteristics of the drug change from kosmotropic to chaotropic. These findings show that loads of solubilized drug may affect the structure of its vehicle and, as a result, its transport across skin-blood barriers. The structural changes of the mesophase may also aid controlled drug delivery.  相似文献   

4.
This study reports on the formation of a low viscosity H(II) mesophase at room temperature upon addition of Transcutol (diethylene glycol mono ethyl ether) or ethanol to the ternary mixture of GMO (glycerol monooleate)/TAG (tricaprylin)/water. The microstructure and bulk properties were characterized in comparison with those of the low viscosity HII mesophase formed in the ternary GMO/TAG/water mixture at elevated temperatures (35-40 degrees C). We characterized the role of Transcutol or ethanol as inducers of disorder and surfactant mobility. The techniques used were rheology, differential scanning calorimetry (DSC), wide- and small-angle X-ray scattering (WAXS and SAXS, respectively), NMR (self-diffusion and (2)H NMR), and Fourier transform infrared (FTIR) spectroscopies. The incorporation of either Transcutol or ethanol induced the formation of less ordered HII mesophases with smaller domain sizes and lattice parameters at room temperature (up to 30 degrees C), similar to those found for the GMO/TAG/water mixture at more elevated temperatures (35-40 degrees C). On the basis of our measurements, we suggest that Transcutol or ethanol causes dehydration of the GMO headgroups and enhances the mobility of the GMO chains. As a result, these two small molecules, which compete for water with the GMO polar headgroups, may increase the curvature of the cylindrical micelles and also perhaps reduce their length. This results in the formation of fluid H(II) structures at room temperature (up to 30 degrees C). It is possible that these phases are a prelude to the H(II)-L(2) transformation, which takes place above 35 degrees C.  相似文献   

5.
This study highlights the effects of amphiphile chain length and counter ions on the self-assembly and dielectric behaviour of non-aqueous lyotropic liquid crystals. Two-dimensional hexagonal mesophase is seen for short-chain length sodium dodecyl sulphate, while lamellar and multiwall lamellar mesophases are noticed for long-chain length cetyltrimethylammonium bromide and polyoxyethylene (20) sorbitan monolaurate amphiphiles in the non-aqueous domains of ethylene glycol. A strong influence of amphiphile counter ions is seen on static dielectric constant, loss factor, relaxation frequency and relaxation time of these lyotropic mixtures. Refractive indices of these lyotropic phases are also highlighted.  相似文献   

6.
《Liquid crystals》1997,22(4):427-443
Novel amphiphilic glucamine derivatives have been synthesized. These are N-benzoyl-1-deoxy1-methylamino-D-glucitols and N-benzoyl-1-amino-1-deoxy-D-glucitols carrying one, two or three aliphatic chains (CnH2n 1O- with n 3, 6 and 12) grafted to the benzamido group. The thermotropic mesophases of these compounds were studied by thermal polarizing optical microscopy and differential scanning calorimetry, and some also by X-ray scattering. Depending on the number and the length of the alkyl chains lamellar, bicontinuous cubic, hexagonal columnar or inverted micellar cubic mesophases were detected by analogy with lyotropic systems. In the contact region between lamellar phases of the single chain amphiphiles and micellar cubic phases of the mesomorphic triple chain compounds, hexagonal columnar phases can be induced. A hexagonal columnar phase was also induced in the contact region between a bicontinuous and a micellar cubic mesophase. The lyotropic liquid crystalline behaviour of the dodecyloxy substituted N-benzoyl-1-deoxy-1-methylamino-D-glucitols was investigated by the solvent penetration method using ethylene glycol as protic solvent. On increasing the solvent content, the double chain compound forms a cubic and a lamellar mesophase and the triple chain compound forms a hexagonal columnar lyomesophase. The dodecyloxy substituted compounds were also investigated with respect to their behaviour as thin films at the air-water interface using a Langmuir film-balance. Different types of pi/Aisotherms were observed whereby the molecular areas at collapse were determined either by the size of the carbohydrate head group (single chain compounds) or by the number of alkyl chains (double and triple chain compound).  相似文献   

7.
An intermediate mesophase of lyotropic liquid crystalline structure from the ternary mixtures of glycerol monooleate, water, and ethanol was recently characterized in our lab. This mesophase, termed Q(L), consists of discrete discontinuous micelles arranged in a cubic array. The Q(L) phase can solubilize very significant loads of water-insoluble anti-inflamatory drug sodium diclofenac (Na-DFC). Close examination of the internal structures of the lyotropic liquid structure upon increasing the solubilization loads reveals the existence of three structural transitions controlled by the Na-DFC levels. Up to 0.4 wt% Na-DFC, the Q(L) structure remains intact with some influence on the hydration of the headgroups and on the intermicellar forces. However, at 0.8 to 1.2 wt% Na-DFC, the discontinuous micellar cubic phase is transformed into a more condensed mesophase of a bicontinuous cubic phase. At > or =1.2 wt% Na-DFC, the cubic phase is converted into a lamellar phase (L(alpha)). Within 5.5 to 7.3 wt% Na-DFC the mesophase is progressively transformed into a less ordered lamellar structure. At 12 wt% Na-DFC crystals tend to precipitate out. At low Na-DFC concentrations the drug behaves like a lyotropic or kosmotropic salt and can salt-out the surfactant from its water layer, but at higher levels it behaves like a hydrotropic, chaotropic salt and can salt-in the surfactant. The Na-DFC location and position within the interface as well as its polarization and partial ionization are strongly affected by its solubilization contents and the structure that it is inducing. In the cubic phase the drug is located less close to the hydration layer while once transition occurs it is exposed more to the water layer and the surfactant headgroups.  相似文献   

8.
In the present study we characterized the microstructures of the Lc and HII phases in a glycerol monooleate (GMO)/tricaprylin (TAG)/water mixture as a function of temperature. We studied the factors that govern the formation of a low-viscosity HII phase at relatively elevated temperatures (>35 degrees C). This phase has very valuable physical characteristics and properties. The techniques used were differential scanning calorimetry (DSC), wide- and small-angle X-ray scattering (WAXS and SAXS, respectively), NMR (self-diffusion and (2)H NMR), and Fourier transform infrared (FTIR) spectroscopies. The reverse hexagonal phase exhibited relatively rapid flow of water in the inner channels within the densely packed cylindrical aggregates of GMO with TAG molecules located in the interstices. The existence of two water diffusion peaks reflects the existence of both mobile water and hydration water at the GMO-water interface (hydrogen exchange between the GMO hydroxyls and water molecules). Above 35 degrees C, the sample became fluid yet hexagonal symmetry was maintained. The fluidity of the HII phase is explained by a significant reduction in the domain size and also perhaps cylinder length. This phenomenon was characterized by higher mobility of the GMO, lower mobility of the water, and a significant dehydration process.  相似文献   

9.
The synthesis and lyotropic liquid-crystalline (LLC) phase behavior of a homologous series of intrinsically cross-linkable gemini surfactants are described. These novel bis(alkyl-1,3-diene)-based phosphonium gemini amphiphiles exhibit "normal" hexagonal (H(I)), Type I bicontinuous cubic (Q(I)), and lamellar (L(alpha)) phases in water, and can be photocross-linked with retention of phase architecture in each case. On the basis of their locations on the phase diagram, their powder X-ray diffraction profiles, and the physical properties of the cross-linked materials, the Q(I) phases formed by these gemini monomers are consistent with four possible bicontinuous cubic architectures with P or I space group symmetry that have been identified previously for small molecule amphiphiles. The extent of polymerization (i.e., the degree of diene conversion) achieved in the LLC phases was determined to be in the 23% to 71% range using UV-vis spectrometry, which is more than sufficient to extensively stabilize the systems. The resulting cross-linked H(I), L(alpha), and Q(I) phases are stable up to 300 degrees C in air. To our knowledge, these reactive amphiphiles constitute the first example of a polymerizable gemini surfactant, and the first example of a cross-linkable amphiphile system that can be polymerized in both the H(I) and a Q(I) mesophase with retention of phase microstructure.  相似文献   

10.
Phase transformation of mesoporous silica during the drying process is investigated. As-synthesized hexagonal p6mm obtained under the conditions used in this study is transformed to cubic Ia3d as drying proceeds, even at room temperature. Prolonged synthesis results in the formation of a well-ordered hexagonal mesophase, with almost no phase transformation. Drying at a higher temperature promotes the phase transformation of not only hexagonal to cubic, but also cubic to lamellar mesophases. Release of water is detected during drying, which is followed by the phase transformation of the mesophases. The phase transformations observed here proceed against the direction estimated on the basis of the state-of-the-art understanding. Here, considering the degree of silicate condensation and the amount of residual water in the as-synthesized mesoporous silica, a comprehensive explanation of mesophase determination is proposed including thermodynamic and kinetic aspects to account for the results observed here and those in the literature.  相似文献   

11.
The goal of the present work is to study theoretically the structure of water inside the water cylinder of the inverse hexagonal mesophase (H(II)) of glyceryl monooleate (monoolein, GMO), using the method of molecular dynamics. To simplify the computational model, a fixed structure of the GMO tube is maintained. The non-standard cylindrical geometry of the system required the development and application of a novel method for obtaining the starting distribution of water molecules. A predictor-corrector schema is employed for generation of the initial density of water. Molecular dynamics calculations are performed at constant volume and temperature (NVT ensemble) with 1D periodic boundary conditions applied. During the simulations the lipid structure is kept fixed, while the dynamics of water is unrestrained. Distribution of hydrogen bonds and density as well as radial distribution of water molecules across the water cylinder show the presence of water structure deep in the cylinder (about 6 ? below the GMO heads). The obtained results may help understanding the role of water structure in the processes of insertion of external molecules inside the GMO∕water system. The present work has a semi-quantitative character and it should be considered as the initial stage of more comprehensive future theoretical studies.  相似文献   

12.
 The triangular phase diagram of the system dodecyltri-methylammonium hydroxide (DTAOH)–dodecanephosphonic acid (H2DP)–water was studied by several techniques. The DTAOH-rich zone could not be studied because DTAOH decomposed when it was dried. Pure H2DP only forms lamellar mesophases with water. The inclusion of DTAOH in the system produces the appearance of cubic and hexagonal mesophases. The gradual increase in DTAOH proportion lead to the gradual reduction in the existence of the lamellar mesophase domain, and increase of the hexagonal liquid crystal domain. At high DTAOH content, the lamellar mesophase disappeared. This behavior was explained by the gradual destruction of the hydrogen-bonded structure in the polar headgroup layer of liquid crystal aggregates. H2DP-rich anhydrous crystals were triclinic. Received: 8 September 1997 Accepted: 17 February 1998  相似文献   

13.
A taper-shaped phosphonic acid, 3,4,5-tris(dodecyloxy)phenylmethylphosphonic acid ( 1 ), was synthesized; its lyotropic liquid crystalline (LLC) behaviour and its ability simultaneously to order and acid-dope polyaniline were examined. It was found that the ability of 1 to form LLC phases in the presence of several hydrophilic solvents is restricted by strong intermolecular interactions between the phosphonic acid head groups (presumably H-bonding). The amphiphile exhibits poor miscibility with pure water and even with strong H-bonding organic solvents such as DMF. However, it forms a lamellar mesophase in the presence of aqueous acid. Upon deprotonation of the phosphonic acid head group with NaOH, the resulting disodium salt of the amphiphile is able to form a well defined lamellar phase with pure water. The propensity of 1 to form lamellar phases is somewhat unusual since its tapered molecular shape should direct it to form an inverted hexagonal LLC phase. These results suggest that intermolecular head group interactions are more important in determining the overall LLC behaviour of this phosphonic acid amphiphile than are the hydrophobic character and shape of the organic tail system. Compound 1 was also found to be sufficiently acidic to act as an acid dopant for the conjugated polymer polyaniline in the emeraldine base form. LLC acid 1 induces the resulting polymeric salt to form an electrically conductive LLC complex with an extended lamellar microstructure. The bulk conductivity of the resulting nanostructured polyaniline salt was found to be only in the semiconducting regime (10 -5 Scm -1 ), due to an unfavourable polyaniline chain conformation in the LLC complex.  相似文献   

14.
The aqueous phase behavior of mixtures of 1-glycerol monooleate (GMO) and its ether analogue, 1-glyceryl monooleyl ether (GME) has been investigated by a combination of polarized microscopy, X-ray diffraction, and NMR techniques. Three phase diagrams of the ternary GMO/GME/water system have been constructed at 25, 40, and 55 degrees C. The results demonstrate that the increasing amount of GME favors the formation of the reversed phases, evidenced by the transformation of the lamellar and bicontinuous cubic liquid crystalline phases of the binary GMO/water system into reversed micellar or reversed hexagonal phases. For a particular liquid crystalline phase, increasing the GME content has no effect on the structural characteristics and hydration properties, thus suggesting ideal mixing with GMO. Investigations of dispersed nanoparticle samples using shear and a polymeric stabilizer, Pluronic F127, show the possibility of forming two different kinds of bicontinuous cubic phase nanoparticles by simply changing the GMO/GME ratio. Also NMR self-diffusion measurements confirm that the block copolymer, Pluronic F127, used to facilitate dispersion formation, is associated with nanoparticles and provides steric stabilization.  相似文献   

15.
We use a kinetic lattice-Boltzmann method to simulate the self-assembly of the cubic primitive (P), diamond (D), and gyroid (G) mesophases from an initial quench composed of oil, water, and amphiphilic particles. Here, we also report the self-assembly of the noncubic hexagonal phase and two lamellar phases, one with periodic convolutions. The periodic mesophase structures are emergent from the underlying conservation laws and quasi-molecular interactions of the lattice-Boltzmann model. We locate regions of the model's parameter space where the sequence of appearance of mesophases lamellar --> primitive --> hexagonal is in agreement with pressure jump experiments and the sequence cubic --> lamellar is in agreement with compositional variations reported in the literature. The ability of our lattice-Boltzmann model to simulate self-assembly of cubic and noncubic phases in a unified and consistent manner opens the way for further investigations into the transition pathways and kinetics of the phase transitions between these states as well as of the rheology of these phases.  相似文献   

16.
Approximate partial phase diagrams for nine amphiphile-protic ionic liquid (PIL) systems have been determined by synchrotron source small angle X-ray scattering, differential scanning calorimetry and cross polarised optical microscopy. The binary phase diagrams of some common cationic (hexadecyltrimethyl ammonium chloride, CTAC, and hexadecylpyridinium bromide, HDPB) and nonionic (polyoxyethylene (10) oleyl ether, Brij 97, and Pluronic block copolymer, P123) amphiphiles with the PILs, ethylammonium nitrate (EAN), ethanolammonium nitrate (EOAN) and diethanolammonium formate (DEOAF), have been studied. The phase diagrams were constructed for concentrations from 10 wt% to 80 wt% amphiphile, in the temperature range 25 °C to >100 °C. Lyotropic liquid crystalline phases (hexagonal, cubic and lamellar) were formed at high surfactant concentrations (typically >50 wt%), whereas at <40 wt%, only micelles or polydisperse crystals were present. With the exception of Brij 97, the thermal stability of the phases formed by these surfactants persisted to temperatures above 100 °C. The phase behaviour of amphiphile-PIL systems was interpreted by considering the PIL cohesive energy, liquid nanoscale order, polarity and ionicity. For comparison the phase behaviour of the four amphiphiles was also studied in water.  相似文献   

17.
The potential of reverse hexagonal mesophases based on monoolein (GMO) and glycerol (as cosolvent) to facilitate the solubilization of proteins, such as insulin was explored. H(II) mesophases composed of GMO/decane/water were compared to GMO/decane/glycerol/water and GMO/phosphatidylcholine (PC)/decane/glycerol/water systems. The stability of insulin was tested, applying external physical modifications such as low pH and heat treatment (up to 70°C), in which insulin is known to form ordered amyloid-like aggregates (that are associated with several neurodegenerative diseases) with a characteristic cross β-pleated sheet structure. The impact of insulin confinement within these carriers on its stability, unfolding, and aggregation pathways was studied by combining SAXS, FTIR, and AFM techniques. These techniques provided a better insight into the molecular level of the "component interplay" in solubilizing and stabilizing insulin and its conformational modifications that dictate its final aggregate morphology. PC enlarged the water channels while glycerol shrank them, yet both facilitated insulin solubilization within the channels. The presence of glycerol within the mesophase water channels led to the formation of stronger hydrogen bonds with the hosting medium that enhanced the thermal stability of the protein and remarkably affected the unfolding process even after heat treatment (at 70°C for 60 min).  相似文献   

18.
The domain microstructure and the nematic LC mesophase in a series of side-chain liquid crystalline/isotropic (LC/I) diblock copolymers with systematically varied block volume fractions were studied in a broad temperature range (25–170 °C) by DSC, polarized microscopy, and wide and small angle X-ray scattering. At all temperatures the block copolymers are microphase separated. The PSLC block copolymers exhibit order at two length-scales: on one hand, a nematic LC mesophase with characteristic length-scale of 0.43 nm (intermesogen distance); on the other hand, lamellar, hexagonal or cubic domain microstructures with characteristic length-scales of 27–44 nm (lattice parameter). The LC block was either located in the matrix or confined inside the microdomains. The thermotropic behavior is characterized by the sequence g/~35 °C/n/~115 °C/i and is not affected by the domain microstructure and/or dimensions. Analysis of the lamellar dimensions showed that the LC chain is stretched. With increasing temperature, a thermal expansion of both blocks takes place followed by a retraction of the LC chain above TNI. The phase diagram is asymmetric and does not alter above TNI. No order-to-order transitions triggered by the nematic-isotropic transition are observed. It was shown that domain microstructures of low interfacial curvature (lamellar and hexagonal) are energetically favored over the geometrically expected ones of high interfacial curvature (micellar cubic) due to the presence of nematic LC mesophase in the matrix or in the microdomains. By comparison to theory a Kuhn segment length of the LC block bLC=0.86 nm was derived from the location of the lamellar/hexagonal phase boundaries.This paper is dedicated to Prof. Fischer on the occasion of his 75th birthday.  相似文献   

19.
Amphiphile lyotropic liquid crystalline self-assembly materials are being used for a diverse range of applications. Historically, the most studied lyotropic liquid crystalline phase is probably the one-dimensional (1-D) lamellar phase, which has been employed as a model system for biomembranes and for drug delivery applications. In recent years, the structurally more complex 2-D and 3-D ordered lyotropic liquid crystalline phases, of which reversed hexagonal (H(2)) and reversed cubic phases (v(2)) are two prominent examples, have received growing interest. As is the case for the lamellar phase, these phases are frequently stable in excess water, which facilitates the preparation of nanoparticle dispersions and makes them suitable candidates for the encapsulation and controlled release of drugs. Integral membrane protein crystallization media and templates for the synthesis of inorganic nanostructured materials are other applications for 2-D and 3-D amphiphile self-assembly materials. The number of amphiphiles identified as forming nanostructured reversed phases stable in excess solvent is rapidly growing. In this article, different classes of amphiphiles that form reversed phases in excess solvent are reviewed, with an emphasis on linking phase behavior to amphiphile structure. The different amphiphile classes include: ethylene oxide-, monoacylglycerol-, glycolipid-, phosphatidylethanolamine-, and urea-based amphiphiles.  相似文献   

20.
Mixed surfactant systems have the potential to impart controlled combinations of functionality and pore structure to mesoporous metal oxides. Here, we combine a functional glucopyranoside surfactant with a cationic surfactant that readily forms liquid crystalline mesophases. The phase diagram for the ternary system CTAB/H(2)O/n-octyl-beta-D-glucopyranoside (C(8)G(1)) at 50 degrees C is measured using polarized optical microscopy. At this temperature, the binary C(8)G(1)/H(2)O system forms disordered micellar solutions up to 72 wt% C(8)G(1), and there is no hexagonal phase. With the addition of CTAB, we identify a large area of hexagonal phase, as well as cubic, lamellar and solid surfactant phases. The ternary phase diagram is used to predict the synthesis of thick mesoporous silica films via a direct liquid crystal templating technique. By changing the relative concentration of mixed surfactants as well as inorganic precursor species, surfactant/silica mesostructured thick films can be synthesized with variable glucopyranoside content, and with 2D hexagonal, cubic and lamellar structures. The domains over which different mesophases are prepared correspond well with those of the ternary phase diagram if the hydrophilic inorganic species is assumed to act as an equivalent volume of water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号