首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
利用溶胶 凝胶法制备壳聚糖 二氧化硅有机无机复合杂化膜,用于对辣根过氧化酶进行固定,制得测定H2O2的电流型生物传感器。以1mmol/LK4Fe(CN)6作为电子媒介体。研究了各种因素如壳聚糖与二氧化硅的比率、pH、温度、工作电位等对传感器响应电流的影响。计时电流法测定H2O2的线性范围为2.0×10-6~6.8×10-4mol/L,检出限为8.0×10-7mol/L。测得酶催化动力学参数米氏常数Km=0 87mmol/L。用该法对实际样品进行了测定。  相似文献   

2.
Lei CX  Hu SQ  Shen GL  Yu RQ 《Talanta》2003,59(5):981-988
A procedure for fabricating an enzyme electrode has been described based on the effective immobilization of horseradish peroxidase (HRP) to a nano-scaled particulate gold (nano-Au) monolayer modified chitosan-entrapped carbon paste electrode (CCPE). The high affinity of chitosan entrapped in CCPE for nano-Au associated with its amino groups has been utilized to realize the use of nano-Au as an intermediator to retain high bioactivity of the enzyme. Hydrogen peroxide (H2O2) was determined in the presence of hydroquinone as a mediator to transfer electrons between the electrode and HRP. The HRP immobilized on nano-Au displayed excellent electrocatalytical activity to the reduction of H2O2. The effects of experimental variables such as the operating potential of the working electrode, mediator concentration and pH of measuring solution were investigated for optimum analytical performance by using an amperometric method. The enzyme electrode provided a linear response to hydrogen peroxide over a concentration range of 1.22×10−5-2.43×10−3 mol l−1 with a sensitivity of 0.013 A l mol−1 cm−2 and a detection limit of 6.3 μmol l−1 based on signal per noise =3. The apparent Michaelis-Menten constant (Kmapp) for the sensor was found to be 0.36 mmol l−1. The lifetime, fabrication reproducibility and measurement repeatability were evaluated with satisfactory results. The analysis results of real sample by this sensor were in satisfactory agreement with those of the potassium permanganate titration method.  相似文献   

3.
A new kind of magnetic dextran microsphere (MDMS) with uniform shape and narrow diameter distribution has been prepared from magnetic iron nanoparticles and dextran. Horseradish peroxidase (HRP) was successfully immobilized on the surface of an MDMS-modified glassy-carbon electrode (GCE), and the immobilized HRP displayed excellent electrocatalytic activity in the reduction of H2O2 in the presence of the mediator hydroquinone (HQ). The effects of experimental variables such as the concentration of HQ, solution pH, and the working potential were investigated for optimum analytical performance. This biosensor had a fast response to H2O2 of less than 10 s and an excellent linear relationship was obtained in the concentration range 0.20 μmol L−1–0.68 mmol L−1, with a detection limit of 0.078 μmol L−1 (S/N = 3) under the optimum conditions. The response showed Michaelis–Menten behavior at larger H2O2 concentrations, and the apparent Michaelis–Menten constant was estimated to be 1.38 mmol L−1. Moreover, the selectivity, stability, and reproducibility of the biosensor were evaluated, with satisfactory results. Figure Amperometric response of the biosensor to successive additions of H2O2 and the plot of amperometric response vs. H2O2 concentration  相似文献   

4.
A simple and practical sensor of hydrogen peroxide (H2O2) was designed successfully. The mixture of horseradish peroxidase (HRP) and chitosan (Chit) are effectively immobilized on the surface of poly-L-leucine/polydopamine modified glassy carbon electrode (PL-LEU/PDA/GCE). Under the optimum conditions, the biosensor based on HRP exhibits a fast amperometric response (within 3 s) to H2O2. The linear response range of the sensor is 0.5–952.0 μmol L–1, with the detection limit of 0.1 μmol L–1 (S/N = 3) and the sensitivity of 0.23 A L moL–1 cm–2. The apparent Michaelis–Menten constant (k M app) of the biosensor is evaluated to be 0.12 mmol L–1, which suggests that the HRP-Chit/PL-LEU/PDA/GCE shows a higher affinity for H2O2. The sensor exhibits good sensitivity, selectivity, stability and reproducibility. The proposed method has been successfully applied to the determination of H2O2 in practical samples.  相似文献   

5.
 A reagentless amperometric sensor highly sensitive to H2O2 has been prepared by incorporating fumed silica, horseradish peroxidase (HRP) and Meldola Blue into carbon paste. The efficient mediating ability to shift electrons between HRP and the carbon paste electrode via Meldola Blue was investigated by cyclic voltammetric and amperometric measurements. Reproducibility, response time, detection limit, selectivity and effects of applied potential, temperature and pH on the response of the sensor are reported. The high sensitivity of the sensor with a detection limit of 0.1 μmol/l arose from the high efficiency of the bioelectrocatalytic reduction of hydrogen peroxide via HRP and Meldola Blue. The dependence of the Michaelis-Menten constant on the applied potential and the mediator concentration has been investigated and the results are presented. Received: 20 December 1995/Revised: 13 March 1996/Accepted: 16 March 1996  相似文献   

6.
Feng Li 《Talanta》2009,77(4):1304-1308
A simple and reliable one-pot approach was established for the development of a novel hydrogen peroxide (H2O2) biosensor based on in situ covalent immobilization of horseradish peroxidase (HRP) into biocompatible material through polysaccharide-incorporated sol-gel process. Siloxane with epoxide ring and trimethoxy anchor groups was applied as the bifunctional cross-linker and the inorganic resource for organic-inorganic hybridization. The reactivity between amine groups and epoxy groups allowed the covalent incorporation of HRP and the functional biopolymer, chitosan (CS) into the inorganic polysiloxane network. Some experimental variables, such as mass ratio of siloxane to CS, pH of measuring solution and applied potential for detection were optimized. HRP covalently immobilized in the hybrid matrix possessed high electrocatalytic activity to H2O2 and provided a fast amperometric response. The linear response of the as-prepared biosensor for the determination of H2O2 ranged from 2.0 × 10−7 to 4.6 × 10−5 mol l−1 with a detection limit of 8.1 × 10−8 mol l−1. The apparent Michaelis-Menten constant was determined to be 45.18 μmol l−1. Performance of the biosensor was also evaluated with respect to possible interferences. The fabricated biosensor exhibited high reproducibility and storage stability. The ease of the one-pot covalent immobilization and the biocompatible hybrid matrix serve as a versatile platform for enzyme immobilization and biosensor fabricating.  相似文献   

7.
A new biosensor for the amperometric detection of hydrogen peroxide was developed based on the coimmobilization of horseradish peroxidase (HRP) and methylene blue on a beta-type zeolite modified glassy carbon electrode without the commonly used bovine serum albumin-glutaraldehyde. The intermolecular interaction between enzyme and zeolite matrix was investigated using FT-IR. The cyclic voltammetry and amperometric measurement demonstrated that methylene blue co-immobilized with HRP in this way displayed good stability and could efficiently transfer electrons between immobilized HRP and the electrode. The sensor responded rapidly to H2O2 in the linear range from 2.5 x 10(-6) to 4.0 x 10(-3) M with a detection limit of 0.3 microM. The sensor was stable in continuous operation.  相似文献   

8.
An electrochemical immunosensor based on nano-size particulate gold (nano-Au) monolayer as sensing interface has been developed for probing complement III (C3). The thiol functional group-derived carbon ceramic electrode (CCE) was firstly constructed using (3-mercaptopropyl) trimethoxy silane (MPTMOS) as sol-gel monomer. The stable nano-Au monolayer was obtained resulting from covalent combination between nano-Au and thiol group on the surface of CCE. The nano-Au monolayer formed was utilized as a sensing platform for the immobilization of C3 antibody (anti-C3) and subsequent immunoreaction. A competitive immunoassay format was adopted with horseradish peroxidase (HRP)-C3 as a tracer, hydroquinone and hydrogen peroxide as the enzymatic substrates. The dynamic concentration range for C3 is 0.08-5.6 μg ml−1. The feasibility of regenerating nano-Au monolayer for consecutive assays was demonstrated by a simple chemical treatment after each determination. The high stability of formed nano-Au monolayer, readily adsorptive immobilization of antibody on nano-Au monolayer, efficient activity retention of loading immunoreactants as well as the simple operation for the formation of nano-Au monolayer make proposed methodology an attractive alternative for the designing new-type immunosensors.  相似文献   

9.
A novel electrochemical H2O2 biosensor was constructed by embedding horseradish peroxide (HRP) in a 1-butyl-3-methylimidazolium tetrafluoroborate doped DNA network casting on a gold electrode. The HRP entrapped in the composite system displayed good electrocatalytic response to the reduction of H2O2. The composite system could provide both a biocompatible microenvironment for enzymes to keep their good bioactivity and an effective pathway of electron transfer between the redox center of enzymes, H2O2 and the electrode surface. Voltammetric and time-based amperometric techniques were applied to characterize the properties of the biosensor. The effects of pH and potential on the amperometric response to H2O2 were studied. The biosensor can achieve 95% of the steady-state current within 2 s response to H2O2. The detection limit of the biosensor was 3.5 μM, and linear range was from 0.01 to 7.4 mM. Moreover, the biosensor exhibited good sensitivity and stability. The film can also be readily used as an immobilization matrix to entrap other enzymes to prepare other similar biosensors. Figure Horseradish peroxidase (HRP) embedded in a 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM·BF 4 ) doped DNA network can be used to fabricate a HRP sensor for the determination of H2O2  相似文献   

10.
11.
A phenol biosensor was developed based on the immobilization of tyrosinase on the surface of modified magnetic MgFe2O4 nanoparticles. The tyrosinase was first covalently immobilized to core-shell (MgFe2O4-SiO2) magnetic nanoparticles, which were modified with amino group on its surface. The resulting magnetic bio-nanoparticles were attached to the surface of carbon paste electrode (CPE) with the help of a permanent magnet. The immobilization matrix provided a good microenvironment for the retaining of the bioactivity of tyrosinase. Phenol was determined by the direct reduction of biocatalytically generated quinone species at −150 mV versus SCE. The resulting phenol biosensor could reach 95% of steady-state current within 20 s and exhibited a high sensitivity of 54.2 μA/mM, which resulted from the high tyrosinase loading of the immobilization matrix. The linear range for phenol determination was from 1 × 10−6 to 2.5 × 10−4 M with a detection limit of 6.0 × 10−7 M obtained at a signal-to-noise ratio of 3. The stability and the application of the biosensor were also evaluated.  相似文献   

12.
We report on a bienzyme-channeling sensor for sensing glucose without the aid of mediator. It was fabricated by cross-linking horseradish peroxidase (HRP) and glucose oxidase (GOx) on a glassy carbon electrode modified with multiwalled carbon nanotubes (MWNTs). The bienzyme was cross-linked with the MWNTs by glutaraldehyde and bovine serum albumin. The MWNTs were employed to accelerate the electron transfer between immobilized HRP and electrode. Glucose was sensed by amperometric reduction of enzymatically generated H2O2 at an applied voltage of ?50 mV (vs. Ag/AgCl). Factors influencing the preparation and performance of the bienzyme electrode were investigated in detail. The biosensor exhibited a fast and linear response to glucose in the concentration range from 0.4 to 15 mM, with a detection limit of 0.4 mM. The sensor exhibited good selectivity and durability, with a long-term relative standard deviation of <5 %. Analysis of glucose-spiked human serum samples yielded recoveries between 96 and 101 %.
Figure
A novel bienzyme-channeling sensor for glucose sensing has been constructed without the aid of mediator. This biosensor was fabricated by cross-linking horseradish peroxidase (HRP) and glucose oxidase (GOD) onto glass carbon electrode (GCE) modified with multiwall carbon nanotubes (MWNTs) which accelerated the electron transfer between the HRP and electrode.  相似文献   

13.
A new copper dispersed ceramic-graphite composite electrode was fabricated by the initial mixing of copper nitrate and (3-mercaptopropyl)trimethoxy silane (MPS) followed by stirring with graphite powder. The combination of the metal catalysis and the advantages of the ceramic composite favored the electrocatalytic reduction of hydrogen peroxide (H2O2) at a reduced overpotential of -0.2 V with good sensitivity, stability and reproducibility. The sensor showed a good linear response to H2O2 in the range from 8.3 x 10(-6) M to 2.0 x 10(-3) M with a correlation coefficient of 0.9989 and the detection limit was 6.2 x 10(-6) M (S/N =3).  相似文献   

14.
A novel amperometric biosensor utilizing two enzymes, glucose oxidase (GOD) and horseradish peroxidase (HRP), was developed for the cathodic detection of glucose. The glucose biosensor was constructed by electrochemical formation of a polypyrrole (PPy) membrane in the presence of GOD on the surface of a HRP-modified sol-gel derived-mediated ceramic carbon electrode. Ferrocenecarboxylic acid (FCA) was used as mediator to transfer electron between enzyme and electrode. In the hetero-bilayer configuration of electrode, all enzymes were well immobilized in electrode matrices and showed favorable enzymatic activities. The amperometric detection of glucose was carried out at +0.16 V (versus saturated calomel reference electrode (SCE)) in 0.1 M phosphate buffer solution (pH 6.9) with a linear response range between 8.0×10−5 and 1.3×10−3 M glucose. The biosensor showed a good suppression of interference in the amperometric detection.  相似文献   

15.
The electrochemiluminescent (ECL) behavior of lucigenin on a multi-wall carbon nanotube/nano-Au modified glassy carbon electrode (MWNT/nano-Au/GCE) was studied in this paper. Compared with the bare GCE, the ECL intensity of lucigenin can be greatly enhanced at MWNT/nano-Au/GCE. Based on the fact that superoxide dimutase (SOD) could obviously inhibit the ECL of lucigenin at MWNT/nano-Au/GCE, a sensitive ECL biosensor for determination of SOD was developed with a wide linear range of 5.0 × 10−8–5.0 × 10−6 mol/L with detection limit of 2.5 × 10−8 mol/L.  相似文献   

16.
A sensitive hydrogen peroxidase (H2O2) amperometric sensor based on horseradish peroxidase (HRP)-labeled nano-Au colloids has been proposed. Nano-Au colloids were immobilized by the thiol group of cysteamine, which was associated with the carboxyl groups of poly(2,6-pyridinedicarboxylic acid) (PPDA). With the aid of the hydroquinone, the sensor displayed excellent electrocatalytical response to the reduction of H2O2. Compared with the non-Au-colloid modified electrode, i.e., PPDA/HRP, the Au-colloid modified electrode exhibited better performance characteristics, including stability, reproducibility, sensitivity and accuracy. The biosensor shows a linear response to H2O2 in the range of 3.0 x 10(-7) - 2 x 10(-3) M. The detection limit was 1.0 x 10(-7) M.  相似文献   

17.
An electron transfer mediator, 8-dimethylamino-2,3-benzophenoxazine (Meldola Blue), dissolved in the carrier solution in a flow-injection system, was found to reduce the oxidation potential for hydrogen peroxide from 600-1200 mV without mediator to-100 mV vs. Ag/AgCl with the mediator present. The very low background current of reticulated vitreous carbon (RVC) at this potential makes it possible to detect very low levels of hydrogen peroxide or glucose. Glucose oxidase was covalently coupled with carbodiimide to RVC, and the RVC was formed into a column inserted in a flow-injection system. The calibration curve was linear from 30 nM to 10 microM glucose with 5 microM mediator. At higher mediator concentrations, the linear range was extended to 1000 microM, but with a much higher background current. The sample throughput was about 60 h(-1). The current response decreased to 50% of the original response after 20 days. The coulometric yield was high because the sample was pumped through the pores of the RVC. It was 16% and 55% at a flow rate of 1 ml min(-1) at mediator concentrations of 5 and 50 microM respectively.  相似文献   

18.
制备了石墨烯-壳聚糖(GR-CS)纳米复合材料,并将之与辣根过氧化物酶(HRP)混合,构建了基于石墨烯-壳聚糖-辣根过氧化物酶的生物传感器(GR-CS-HRP/GC)。探针及循环伏安研究表明,该界面具有优异的电子传导能力、较大的比表面积和良好的生物相容性,对H2O2的还原显示出较好的电催化活性,在工作电位为-0.2 V,0.05 mol/L的磷酸盐缓冲盐溶液(PBS,pH 6.8)中,该酶传感器对过氧化氢响应灵敏度高,检测范围宽,测定H2O2的线性范围为5.0×10-7~2×10-3mol/L(相关系数为0.998)。检出限为2.0×10-7mol/L(S/N=3)。并且表现出良好的稳定性和高选择性。该电极用于实际样品中H2O2的测定,结果令人满意。  相似文献   

19.
A.K. Upadhyay 《Talanta》2009,79(1):38-9495
A novel amperometric biosensor for the analytical determination of hydrogen peroxide was developed. The fabrication of the biosensor was based on the coimmobilization of horseradish peroxidase (HRP), methylene green (MG) and multiwalled carbon nanotubes within ormosils; 3-aminopropyltrimethoxysilane (APTMOS), 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane (ETMOS) and phenyltrimethoxysilane (PHTMOS). APTMOS determined the hydrophilicity/hydrophobicity of the ormosils and PHTMOS and ETMOS increased the physical and mechanical strength of the ormosil matrix. The ormosil modified electrodes were characterized with SEM, UV-vis spectroscopy and electrochemical methods. Cyclic voltammetry and amperometric measurements demonstrated the MG coimmobilized with HRP in this way, displayed good stability and could efficiently shuttle electrons between immobilized enzyme and electrode, and MWCNTs facilitated the electrocatalytic reduction of H2O2 at reduced over potential. The Micheaelis constant of the immobilized HRP was 1.8 mM, indicating a high affinity of the HRP to H2O2 without loss of enzymatic activity in ormosil matrix. The prepared biosensor had a fast response of H2O2, less than 10 s, and excellent linear range of concentration from 5 × 10−7 to 2 × 10−5 M with the detection limit of 0.5 μM (S/N = 3) under the optimum conditions. At the same time, the influence of solution pH, effect of enzyme amount, steady-state applied potential and temperature on the biosensor were investigated. The enzyme electrode retained about 90% of its initial activity after 30 days of storage in a dry state at 4 °C. The preparation of the developed biosensor was convenient and showed high sensitivity with good stability.  相似文献   

20.
The development and characterization of a highly sensitive enzyme immobilized carbon based electrode for the determination of subnanomolar concentrations of hydrogen peroxide in aqueous samples is described. The biosensor consists of horseradish peroxidase (HRP) immobilized in solid carbon paste along with a suitable redox mediator. The latter allows the acceleration of the electroreduction of HRP in the presence of hydrogen peroxide. Several phenothiazines as mediators are investigated in a comparative manner and with respect to dimethylferrocene using cyclic voltammetry and amperometry. Insolubilization of the HRP in the solid carbon paste is achieved by cross-linking the enzyme with glutaraldehyde and bovine serum albumin. Several experimental parameters such as pH, mediator and enzyme content are considered. The hydrogen peroxide determination is better carried out in 0.1 M acetate buffer, pH 4.5, by amperometry at an applied potential of 0.0 V versus Ag/AgCl, 3 M NaCl concentration and by using the phenothiazine base as redox mediator. The biosensor response is linear over the concentration range 2 nM-10 microM with a detection limit of 1 nM. The linear range of the hydrogen peroxide response without a mediator in the biosensor is found between 2 and 40 microM. The biosensor can be used for more than 180 measurements. Additional modification of the electrode by incorporation of Nafion SAC-13 microparticles in the solid carbon paste allows detection of concentrations of hydrogen peroxide as low as 0.1 nM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号