首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
This work is devoted to a systematic study of nanoparticle dispersion by ultrasonication in different solutions: from organic solvents to polymer solutions. The cluster size of nanoparticles at different concentrations in both organic solvents and polymer solutions were directly characterized by Dynamic Light Scattering to study the effect of solid concentration, surfactant and polymer on the dispersion. It reveals that in stabilized suspensions, the smallest attainable size or aggregate size of nanoparticles is independent of solvent type and solid content over the tested range. Furthermore, nanoparticles in simple solvent and in polymer solutions had the similar evolution of cluster size and almost the same final size, which could be very helpful to optimize the dispersion of nanofillers in polymer solutions and nanocomposites. It is also shown that, with appropriate sonication amplitudes, the dispersion procedure developed for very dilute suspensions could be transferred to higher concentration suspensions or even to polymer suspensions.  相似文献   

3.
Using methods of optical spectroscopy and small-angle X-ray scattering, the kinetics of the UV radiation-induced formation of gold nanoparticles in HAuCl4-doped water–acid solutions of chitosan has been studied from the very beginning of the reaction. It has been shown that, during synthesis, as the mean size of nanoparticles grows from 2.9 to 6.3 nm, the maximum of the plasmon resonance shifts toward shorter waves (535–523 nm), whereas for a fully formed ensemble of nanoparticles, the reverse trend is observed. It has been found experimentally that the particle size distribution curve changes during synthesis. Based on the inverse problem analysis, conclusions have been drawn regarding the dominant mechanisms behind nanoparticle growth.  相似文献   

4.
Absence of emission concentration quenching accompanied by high emission efficiency in a solid state is highly challenging though very attractive, for example, for fabrication of solid state light emitters or fluorescent organic nanoparticles (FONs). Here, formation of FONs based on novel p-phenylenediacetonitrile derivatives by re-precipitation method in aqueous solutions is demonstrated. The exceptionality of the derivatives employed is manifested by nitrile groups-induced steric hindrance effects inhibiting concentration quenching of emission. Consisting of different size and polarity end-groups, phenyl groups in one compound and hexyl-carbazolyl in another, the derivatives were examined and compared in regard to nanoparticle formation morphology, size tunability, spectral signatures, and fluorescence turn-on efficiency. The variation of solvent/non-solvent ratio allowed to achieve tuning of the FON sizes from 55?nm up to 360?nm and resulted in maximal fluorescence on/off ratio of 38. Spectrally resolved confocal fluorescence microscopy revealed somewhat different molecule arrangement in different FONs suggesting dominant amorphous-like phase, which was confirmed by small angle X-ray scattering measurements. The FONs were verified to be stable against degradation or conglomeration into larger clusters at least over a couple of months thus implying their feasibility for practical applications. Finally, potential application of the fluorescent p-phenylenediacetonitrile nanoparticles for organic vapor sensing via fluorescence on/off switching was demonstrated.  相似文献   

5.
Synthesis of CdS and ZnS nanoparticles in reverse micelles and organic solvents has been carried out. Particles with a hexagonal structure 2–5 nm in size are formed during synthesis. Maintaining the reaction mixture at room temperature leads to the formation of nanoparticles with a cubic structure 100–150 nm in size. The changes in the optical properties of CdS and ZnS nanoparticles, depending on the synthesis method and conditions and on the precursors used, have been investigated. The luminescence characteristics of local surface defects of nanoparticles depend weakly on nanoparticle sizes. The dependence of the fluorescence and phosphorescence intensity of nanoparticle surface defects on the polarity of surrounding solution is demonstrated; thus, these particles can be used as polarity indicators.  相似文献   

6.
The experimental parameters that control the surface morphology and size of iron cobalt nanoparticles synthesized at room temperature by pulsed laser ablation deposition (PLAD) technique have been systematically investigated. The nanoparticle synthesis has been achieved at higher operating gas pressures of argon. It was found that nanoparticles upon deposition formed small clusters, the size of which increases with decreasing pressure, increasing laser-energy density, and decreasing target-to-substrate distance. This trend could be attributed to change in the kinetic energy of deposited nanoparticles with varying argon pressure, laser-energy, and target-to-substrate distance. The nanoparticles size and size distribution showed strong dependence on argon pressure and weak dependence on laser-energy density and target-to-substrate distance.  相似文献   

7.
In the present study, a model for the heating of inert-matrix-hosted metal nanoparticles with laser radiation taking into account the melting processes is examined. The calculations were performed using the characteristics of gold and pentaerythritol tetranitrate materials. The kinetic dependences of the temperature and molten-layer thickness on nanoparticle surface were calculated. The main non-dimensional governing parameters of the model were identified. An expression for the maximum thickness of molten layer was obtained. The results can be used in predicting the stability of nonlinear-optics devices with hosted gold nanoparticles, in raising the efficiency of hyperthermia cancer therapy, and in optimizing the optical detonators.  相似文献   

8.
Titanium carbide formation by the solid–solid reaction on the surface of Ti nanoparticles was studied in situ using a high-resolution transmission electron microscope with a heating stage. The cross-sectional image of the Ti surface was clearly observed. Vacuum-deposited carbon covered the whole the surface of Ti nanoparticles in spite of the partly evaporation on the nanoparticle surface. The diffusion of the carbon atoms inside the Ti nanoparticles depended on the size of the nanoparticles. When the Ti nanoparticle diameter was less than 30 nm, carbon atoms diffused into the Ti nanoparticle and formed TiC. The superstructure of the Ti nanoparticles was observed, which revealed the growth process of TiC to be the diffusion of carbon atoms. For Ti nanoparticles with diameter larger than 30 nm it was observed that diffusion of Ti atoms into the carbon layer was dominant, which resulted in formation of TiC in the carbon layer at the surface of Ti nanoparticles.  相似文献   

9.
The Monte Carlo method is applied to the study of the formation of condensed-phase nuclei from water vapor on electrically charged silver iodide nanocrystals. This study is a continuation of the investigations carried out earlier in [1] with electrically neutral nucleation centers. Nanoparticles with a size of up to 4 nm and flat nanoparticles with a size of up to 10 nm are investigated. The free energy, entropy, and the work of formation of nuclei with a size of up to 6729 molecules are calculated at the atomic level by the bicanonical statistical ensemble (BSE) method at a temperature of 260 K. Thermodynamic stability of nuclei is investigated depending on the size, shape, and charge of nanocrystal nucleation centers, as well as depending on the presence of crystal defects and the degree of spatial localization of charge on the surface of nanoparticles. The excess charge has a crucial effect on the work of formation of a nucleus only in the case of strong spatial localization of the latter near a point crystal defect; however, this effect is restricted to a relatively small size of the nuclei and therefore cannot substantially enhance the ice-forming activity of nanoparticles. A nucleus that grows on the surface of a nanoparticle evolves through three stages that differ in molecule retention mechanism and thermodynamic stability. The charge of a nanoparticle has a small effect on these factors. The leading factor that determines the ice-forming activity of ion nanocrystals is their intrinsic electric field due to the nonuniform distribution of charge within a unit cell of the crystal lattice.  相似文献   

10.
It has been found experimentally that electron irradiation of polycrystalline AgI films leads to the formation of a nanocrystalline silver particle monolayer. With an increase in the irradiation time, the nanoparticle size grows but the concentration of the particles first increases and then drops. Formation mechanisms of the nanoparticles and the dynamics of their growth have been considered. Ostwald’s ripening, fieldinduced migration, and nanoparticle charge variation during irradiation by low-energy electrons have been shown to be the main processes responsible for the above effects.  相似文献   

11.
This article demonstrates the influence of various surfactants of different polarities—anionic, sodium dodecyl sulfate, cationic, hexadecyltrimethylammonium bromide and non-ionic, and polyoxyethylene iso-octyl phenyl ether (TX-100)—on the formation of CdSe nanoparticles in aqueous solutions. The surfactant-stabilizing effect has been monitored using transmission electron microscopy. Spectral properties of CdSe nanoparticles have been investigated; the structure of the long-wave edge of the fundamental absorption band of CdSe nanoparticles has been analyzed. It has been shown that the variation of the synthesizing conditions (stabilizer’s nature and concentration, CdSe concentration, etc.) allows the tailoring of the CdSe nanoparticle size in the range of 8–17 nm. Lifshitz–Slyrzov–Wagner kinetic analysis has also been performed using the size variation according to ripening temperature and time period. The differences in the stabilization ability of tested substances are discussed with respect to their structure and possible mechanism of the surface interaction with the nanoparticles. The flexible surface chemistry of the CdSe-micelles causes them to be water soluble and allows their further conjugation with protein molecules through electrostatic attraction. The interaction between functionalized CdSe nanoparticles with protein molecules have been investigated using fluorescence spectroscopy.  相似文献   

12.
The thermalization length distribution of electrons over their kinetic energy in a conduction band is calculated on the basis of the data on the electron effective mass, density of states in conduction band, dielectric permittivity and energy of longitudinal optical phonons. The method of modeling of a recombinational luminescence intensity dependence on the nanoparticle size is proposed on the basis of the assumption that the contribution to a recombinational luminescence gives only those charge carriers which in the result of thermalization did not reach a near-surface layer of nanoparticles. Using such the approach the theoretical dependence of recombinational luminescence intensity on the nanoparticle size for LaPO4 and LuPO4 are calculated. The revealed correlation of experimental and theoretical dependences confirms that the commensurability of electron thermalization length with nanoparticle size is the main reason of the sharp decrease of X-ray excited luminescence intensity when the nanoparticle size decreases.  相似文献   

13.
A germanium (Ge) nanoparticle surface was etched in an aqueous solution under monochromatic light irradiation in the infrared-to-ultraviolet region. Since the bandgap widened up to the photon energy of the irradiating light, the average size of the nanoparticles was controlled and the size distribution narrowed. The quantum size effect explained the correlation between the resulting bandgap energy and the final size. The etched nanoparticles showed blue-green or red-infrared photoluminescence (PL) after the surfaces were terminated with organic molecules or hydrogen atoms. The PL peak energy was independent of size, indicating PL was due to radiative recombination via localized states at the Ge core surface.  相似文献   

14.
The ubiquity of naturally occurring nanoparticles in the aquatic environment is now widely accepted, but a better understanding of the conditions that promote their formation and persistence is needed. Using cadmium sulfide (CdS) as a model metal sulfide species, thiolate-capped CdS nanoparticles were prepared in the laboratory to evaluate how aquatic conditions influence metal sulfide nanoparticle growth and stability. This work examines CdS nanoparticle growth directly in aqueous solution at room temperature by utilizing the size-dependent spectroscopic properties of semiconductors detectable by UV/vis. CdS nanoparticle growth was governed by oriented attachment, a non-classical mechanism of crystallization in which small precursor nanoparticles coalesce to form larger nanoparticle products. Nanoparticle growth was slowed with increasing capping agent and decreasing ionic strength. In addition to examining the short-term (hours) growth of the nanoparticles, a long-term study was conducted in which cysteine-capped CdS nanoparticles were monitored over 3 weeks in solutions of various ionic strengths. The long-term study revealed an apparent shift from small nanoparticles to nanoparticles twice their original size, suggesting nanoparticle growth may continue through oriented attachment over longer time scales. High-ionic strength solutions resulted in salt-induced aggregation and eventual settling of nanoparticles within days, whereas low-ionic strength solutions were stable against settling over the course of the experiment. Sulfide recovery from cysteine-capped CdS nanoparticles as acid volatile sulfide was nearly quantitative after 2 weeks in fully oxygenated water, demonstrating significantly slowed oxidation of sulfide when complexed to Cd(II) within CdS nanoparticles. The nanoparticles were also shown to be resistant to oxidation by Fe(III) (hydr)oxide. This study illustrates that aggregation, rather than chemical oxidation, is likely more important to the lifetime of many metal sulfide nanoparticles in the aquatic environment.  相似文献   

15.
The effect of surface tension on the activation energy for oxygen-ionic conduction in nanoceramics is considered. The activation energy is calculated for oxygen ion diffusion through oxygen vacancies, which are treated as dilatation centers. The activation energy is shown to decrease as the nanoparticle size decreases. Based on the size distribution function of nanoparticles, the activation energy distribution function is calculated. Analytical expressions are obtained for the dependences of the ionic conduction on temperature and nanoparticle size. The increase of two to three orders of magnitude in the oxygen-ionic conduction observed earlier in the ZrO2: 16% Y nanoceramics is adequately described by these expressions. The surface tension of nanoparticles is shown to cause a substantial increase in the oxygen-ionic conduction observed in nanoceramics; the main contribution to the conductivity is related to a region near the particle surface.  相似文献   

16.
For nanoparticle agglomerates, the catalytic activity may depend strongly on their structure. The influence of different parameters such as agglomerate structure, primary particle temperature history and surface preconditioning on the catalytic activity of nanoparticles was investigated. The fraction of agglomerate surface contributing to the reaction depends on the agglomerate structure and on the velocity of the reaction under investigation. For extremely fast reactions such as the oxidation of hydrogen on Pt nanoparticles, only the outermost surface (exposed surface) contributes substantially to the formation of water. For the system investigated here, the inner surface not substantially contributing to the reaction accounted for at least 70% of the total particle surface as determined from oxygen presaturation experiments of the agglomerate surface. A considerable activity loss of the platinum particles was observed on preheating the nanoparticle agglomerates. The preheating leads to an increase in the nanoparticle size by an order of magnitude due to sintering. It is unclear if this activity reduction is due to changes in the particle surface state or to a real size effect of the nanoparticles.  相似文献   

17.
Scattering of laser radiation by nanoparticles (latex balls and silver nanoparticles) is investigated in a wide temperature interval. It is demonstrated that water is structured near the porous surface of a solid body and acquires low-dimension topology coinciding with the fractal dimension of the porous surface. A correlation is established between variations in the nanoparticle diffusion coefficient and the dielectric properties of aqueous organic solutions with an organic component in the mixture. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 8–15, February, 2009.  相似文献   

18.
A kinetic Monte Carlo simulation of nanoparticle film formation via nanocolloid drying is presented. The proposed two-dimensional model addresses the dynamics of nanoparticles in the vertical plane of a drying nanocolloid film. The gas–liquid interface movement due to solvent evaporation was controlled by a time-dependent chemical potential, and the resultant particle dynamics including Brownian diffusion and aggregate growth were calculated. Simulations were performed at various Peclet numbers defined based on the rate ratio of solvent evaporation and nanoparticle diffusion. At high Peclet numbers, nanoparticles accumulated at the top layer of the liquid film and eventually formed a skin layer, causing the formation of a particulate film with a densely packed structure. At low Peclet numbers, enhanced particle diffusion led to significant particle aggregation in the bulk colloid, and the resulting film structure became highly porous. The simulated results showed some typical characteristics of a drying nanocolloid that had been reported experimentally. Finally, the potential of the model as well as the remaining challenges are discussed.  相似文献   

19.
A highly controllable and scalable process for fabrication of large amounts of concentrated lignin nanoparticles (LNPs) is reported. These lignin core nanoparticles are formed through flash nanoprecipitation, however, scaling up of the fabrication process requires fundamental understanding of their operational formation mechanism and surface properties. It is shown how a semicontinuous synthesis system with a recirculation loop makes it possible to produce flash precipitated lignin nanoparticles in large amounts for practical applications. The roles of the process parameters, including flow rates and lignin concentration, are investigated and analyzed. The results indicate that the LNPs are formed by a process of continuous burst nucleation at the point of mixing without diffusive growth, which yields nanoparticles of highly uniform size following a modified LaMer nucleation and growth mechanism. This mechanism makes possible facile process control and scale-up. Effective control of the resulting nanoparticle size is achieved through the initial concentration of lignin in the injected solution. The impressive capability to produce suspensions of any predesigned multimodal distribution is demonstrated. The resulting nanofabrication technique can produce large volumes of concentrated LNP suspensions of high stability and tightly controlled size distributions for biological or agricultural applications.  相似文献   

20.
We have achieved highly localized control of pattern formation in two-dimensional nanoparticle assemblies by direct modification of solvent dewetting dynamics. A striking dependence of nanoparticle organization on the size of atomic force microscope-generated surface heterogeneities is observed and reproduced in numerical simulations. Nanoscale features induce a rupture of the solvent-nanoparticle film, causing the local flow of solvent to carry nanoparticles into confinement. Microscale heterogeneities instead slow the evaporation of the solvent, producing a remarkably abrupt interface between different nanoparticle patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号