首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical study of the leaves and twigs of Viscum album led to the isolation of five new lignan glycosides, namely, ligalbumosides A–E (2‐6) and one known lignan glycoside, alangilignoside C (1). The structures of five new lignan glycosides were determined to be (7R,8S,8'S)‐4,9,4'‐trihydroxy‐3,5,3',5'‐tetramethoxy‐7,9'‐epoxylignan 9‐O‐β‐D‐glucopyranoside (2), (7S,8S,7'S,8'R)‐4,9,4'‐trihydroxy‐3,5,3',5',7'‐pentamethoxy‐7,9'‐epoxylignan 9‐O‐β‐D‐glucopyranoside (3), (7R,8R,7'S,8'S)‐4,9,4'‐trihydroxy‐3,5,3',5',7'‐pentamethoxy‐7,9'‐epoxylignan 9‐O‐β‐D‐glucopyranoside (4), (7S,8R,7'S,8'R)‐4,9,4'‐trihydroxy‐3,5,3',5',7'‐pentamethoxy‐7,9'‐epoxylignan 9‐O‐β‐D‐glucopyranoside (5), and (7R,8S,7'R,8'S)‐4,9,4',7'‐tetrahydroxy‐3,5,3',5'‐tetramethoxy‐7,9'‐epoxylignan 9‐O‐β‐D‐glucopyranoside (6) using 1D‐, 2D‐NMR, and CD spectra, chemical methods, as well as comparing the results with those reported in the literature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Four new tetrahydrofuranoid lignan glycosides, (7S,8R,7′R,8′S)‐4,9,4′,7′‐tetrahydroxy‐3,3′‐dimethoxy‐7,9′‐epoxylignan 9‐Oβ‐D ‐glucopyranoside ( 2 ), (7R,8S,7′S,8′R)‐4,9,4′,7′‐tetrahydroxy‐3,3′‐dimethoxy‐7,9′‐epoxylignan 9‐Oβ‐D ‐glucopyranoside ( 3 ), (7R,8S,7′R,8′S)‐4,9,4′,9′‐tetrahydroxy‐3,3′‐dimethoxy‐7,7′‐epoxylignan 9‐Oβ‐D ‐glucopyranoside ( 4 ), and rel‐(7R,8S,7′S,8′R)‐4,9,4′,9′‐tetrahydroxy‐3,3′‐dimethoxy‐7,7′‐epoxylignan 9‐Oβ‐D ‐glucopyranoside ( 5 ), and ten known lignan glycosides, 1 and 6 – 14 , were isolated from the leaves of Osmanthus fragrans Lour. var. aurantiacus Makino . Their structures were established on the basis of spectral and chemical studies.  相似文献   

3.
Two novel and three new sterol glycosides were isolated from the MeOH extract of the aerial parts of Ajuga salicifolia (L.) Schreber . The structures of the compounds were elucidated as (3R,16S,17S,20R,22S,23S, 24S,25S)‐16,23 : 16,27 : 22,25‐triepoxy‐3‐(β‐D ‐glucopyranosyloxy)coprostigmast‐7‐en‐17‐ol ( 1 ), (3R,16S,17S, 20R,22S,23S,24S,25S)‐16,23 : 16,27 : 22,25‐triepoxy‐3‐{[β‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl]oxy}coprostigmast‐7‐en‐17‐ol ( 2 ), (3R,16S,17R,20S,22R,24S,25S)‐22,25‐epoxy‐3,27‐bis(β‐D ‐glucopyranosyloxy)coprostigmast‐7‐en‐16‐ol ( 3 ), (3R,16S,17R,20S,22R,24S,25S)‐22,25‐epoxy‐3‐{[β‐D ‐glucopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl]oxy}‐27‐(β‐D ‐glucopyranosyloxy)coprostigmast‐7‐en‐16‐ol ( 4 ), and (3R,16R,17S,20R,22S,23S, 24S,25S)‐22,25‐epoxy‐3‐(β‐D ‐glucopyranosyloxy)coprostigmast‐7‐ene‐16,17,23,27‐tetrol 27‐acetate ( 5 ) by means of 1D and 2D NMR spectroscopy and HR‐MALDI mass spectrometry. The novel compounds, which consist of three additional ring systems at the coprostigmastane skeleton, were named ajugasalicioside A ( 1 ) and B ( 2 ), and the new compounds C ( 3 ), D ( 4 ) and E ( 5 ). In our cytotoxicity assays (HeLa cells, Jurkat T cells, and peripheral mononuclear blood cells), ajugasaliciosides A–D specifically inhibited the viability and growth of Jurkat T‐leukemia cells at concentrations below 10 μM . Ajugasalicioside A ( 1 ; (IC50=6 μM ) and C ( 3 ; IC50=3 μM ) were the most active compounds. Ajugasalicioside A ( 1 ) induced cell‐cell contact, inhibited Jurkat T cell proliferation, and up‐regulated mRNA levels of the cell‐cycle regulator cyclin D1, which might be an indication for cell differentiation. Furthermore, 1 down‐regulated the mRNA levels of the NF‐κB subunit p65 in a concentration‐dependent manner. These effects were not found for ajugasalicioside B ( 2 ), which has an additional glucose unit, and the onset of cytotoxicity of 2 (IC50=10 μM ) was delayed by 24 h.  相似文献   

4.
The cross‐aldolization of (−)‐(1S,4R,5R,6R)‐6‐endo‐chloro‐5‐exo‐(phenylseleno)‐7‐oxabicyclo[2.2.1]heptan‐2‐one ((−)‐ 25 ) and of (+)‐(3aR,4aR,7aR,7bS)‐ ((+)‐ 26 ) and (−)‐(3aS,4aS,7aS,7bR)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]furo[2,3‐d]isoxazole‐3‐carbaldehyde ((−)‐ 26 ) was studied for the lithium enolate of (−)‐ 25 and for its trimethylsilyl ether (−)‐ 31 under Mukaiyama's conditions (Scheme 2). Protocols were found for highly diastereoselective condensation giving the four possible aldols (+)‐ 27 (`anti'), (+)‐ 28 (`syn'), 29 (`anti'), and (−)‐ 30 (`syn') resulting from the exclusive exo‐face reaction of the bicyclic lithium enolate of (−)‐ 25 and bicyclic silyl ether (−)‐ 31 . Steric factors can explain the selectivities observed. Aldols (+)‐ 27 , (+)‐ 28 , 29 , and (−)‐ 30 were converted stereoselectively to (+)‐1,4‐anhydro‐3‐{(S)‐[(tert‐butyl)dimethylsilyloxy][(3aR,4aR,7aR,7bS)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]‐furo[2,3‐d]isoxazol‐3‐yl]methyl}‐3‐deoxy‐2,6‐di‐O‐(methoxymethyl)‐α‐D ‐galactopyranose ((+)‐ 62 ), its epimer at the exocyclic position (+)‐ 70 , (−)‐1,4‐anhydro‐3‐{(S)‐[(tert‐butyl)dimethylsilyloxy][(3aS,4aS,7aS,7bR)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]furo[2,3‐d]isoxazol‐3‐yl]methyl}‐3‐deoxy‐2,6‐di‐O‐(methoxymethyl)‐α‐D ‐galactopyranose ((−)‐ 77 ), and its epimer at the exocyclic position (+)‐ 84 , respectively (Schemes 3 and 5). Compounds (+)‐ 62 , (−)‐ 77 , and (+)‐ 84 were transformed to (1R,2R,3S,7R,8S,9S,9aS)‐1,3,4,6,7,8,9,9a‐octahydro‐8‐[(1R,2R)‐1,2,3‐trihydroxypropyl]‐2H‐quinolizine‐1,2,3,7,9‐pentol ( 21 ), its (1S,2S,3R,7R,8S,9S,9aR) stereoisomer (−)‐ 22 , and to its (1S,2S,3R,7R,8S,9R,9aR) stereoisomer (+)‐ 23 , respectively (Schemes 6 and 7). The polyhydroxylated quinolizidines (−)‐ 22 and (+)‐ 23 adopt `trans‐azadecalin' structures with chair/chair conformations in which H−C(9a) occupies an axial position anti‐periplanar to the amine lone electron pair. Quinolizidines 21 , (−)‐ 22 , and (+)‐ 23 were tested for their inhibitory activities toward 25 commercially available glycohydrolases. Compound 21 is a weak inhibitor of β‐galactosidase from jack bean, of amyloglucosidase from Aspergillus niger, and of β‐glucosidase from Caldocellum saccharolyticum. Stereoisomers (−)‐ 22 and (+)‐ 23 are weak but more selective inhibitors of β‐galactosidase from jack bean.  相似文献   

5.
A new, non‐iterative method for the asymmetric synthesis of long‐chain and polycyclic polypropanoate fragments starting from 2,2′‐ethylidenebis[3,5‐dimethylfuran] ( 2 ) has been developed. Diethyl (2E,5E)‐4‐oxohepta‐2,5‐dienoate ( 6 ) added to 2 to give a single meso‐adduct 7 containing nine stereogenic centers. Its desymmetrization was realized by hydroboration with (+)‐IpcBH2 (isopinocampheylborane), leading to diethyl (1S,2R,3S,4S,4aS,7R,8R,8aR,9aS,10R,10aR)‐1,3,4,7,8,8a,9,9a‐octahydro‐3‐hydroxy‐2,4,5,7,10‐pentamethyl‐9‐oxo‐2H,10H‐2,4a : 7,10a‐diepoxyanthracene‐1,8‐dicarboxylate ((+)‐ 8 ; 78% e.e.). Alternatively, 7 was converted to meso‐(1R,2R,4R,4aR,5S,7S,8S,8aR,9aS,10s,10aS)‐1,8‐bis(acetoxymethyl)‐1,8,8a,9a‐tetrahydro‐2,4,5,7,10‐pentamethyl‐2H‐10H‐2,4a : 7,10a‐diepoxyanthracene‐3,6,9(4H,5H,7H)‐trione ( 32 ) that was reduced enantioselectively by BH3 catalyzed by methyloxazaborolidine 19 derived from L ‐diphenylprolinol giving (1S,2S,4S,4aS,5S,6R,7R,8R,8aS,9aR,10R,10aS)‐1,8‐bis(acetoxymethyl)‐1,8,8a,9a‐tetrahydro‐6‐hydroxy‐2,4,5,7,10‐pentamethyl‐2H,10H‐2,4a : 7,10a‐diepoxyanthracene‐3,9(4H,7H)‐dione ((−)‐ 33 ; 90% e.e.). Chemistry was explored to carry out chemoselective 7‐oxabicyclo[2.2.1]heptanone oxa‐ring openings and intra‐ring C−C bond cleavage. Polycyclic polypropanoates such as (1R,2S,3R,4R,4aR,5S,6R,7S,8R,9R,10R,11S,12aR)‐1‐(ethoxycarbonyl)‐1,3,4,7,8,9,10,11,12,12a‐decahydro‐3,11‐dihydroxy‐2,4,5,7,9‐pentamethyl‐12‐oxo‐2H,5H‐2,4a : 6,9 : 6,11‐triepoxybenzocyclodecene‐10,8‐carbolactone ( 51 ), (1S,2R,3R,4R,4aS,5S,7S,8R,9R,10R,12S,12aS)‐1,10‐bis(acetoxymethyl)tetradecahydro‐8‐(methoxymethoxy)‐2,4,5,7,9‐pentamethyl‐3,9‐bis{[2‐(trimethylsilyl)ethoxy]methoxy}‐6,11‐epoxycyclodecene‐4a,6,11,12‐tetrol ((+)‐ 83 ), and (1R,2R,3R,4aR,4bR,5S,6R, 7R,8R,8aS,9S,10aR)‐3,5‐bis(acetoxymethyl)‐4a,8a‐dihydroxy‐1‐(methoxymethoxy)‐2,6,8,9,10a‐pentamethyl‐2,7‐bis{[2‐(trimethylsilyl)ethoxy]methoxy}dodecahydrophenanthrene‐4,10‐dione ( 85 ) were obtained in few synthetic steps.  相似文献   

6.
From the stems of Schisandra rubriflora, two novel partially saturated dibenzocyclooctene lignans, named rubriflorin A ( 1 ) and B ( 6 ), as well as the seven known partially saturated dibenzocyclooctene lignans kadsumarin A ( 2 ), kadsurin ( 3 ), heteroclitin B ( 4 ), heteroclitin C ( 5 ), heteroclitin D ( 7 ), interiorin ( 8 ), and interiorin B ( 9 ) were isolated. The structures of the new compounds 1 and 6 were established on the basis of spectral analysis as (5R,6S,7R,8R,13aS)‐8‐(acetyloxy)‐5,6,7,8‐tetrahydro‐1,2,3,13‐tetramethoxy‐6,7‐dimethylbenz([3,4]cycloocta[1,2‐f][1,3]benzodioxol‐5‐yl (2Z)‐2‐methylbut‐2‐enoate and (6R,7R,12aS)‐7,8‐dihydro‐12‐hydroxy‐1,2,3,10,11‐pentamethoxy‐6,7‐dimethyl‐6H‐dibenzo[a,c]cycloocten‐5‐one, respectively.  相似文献   

7.
A new norsesquiterpene named eupatorone (= (4S,4aR,6R)‐1‐acetyl‐6‐(acetyloxy)‐4,4a,5,6‐tetrahydro‐4,7‐dimethylnaphthalen‐2(3H)‐one; 1 ) and a new sesquiterpene derivative named 2‐deoxo‐2‐(acetyloxy)‐9‐oxoageraphorone (= (1R,4S,4aR,6R,8aS)‐6‐(acetyloxy)‐3,4,4a,5,6,8a‐hexahydro‐4,7‐dimethyl‐1‐(1‐methylethyl)naphthalen‐2(1H)‐one; 2 ), together with the five known cadinene derivatives 3 – 7 were isolated from the flower of Eupatorium adenophorum (Spreng. ). Their structures were established by extensive NMR experiments, including 1D and 2D NMR.  相似文献   

8.
Two new skeletal triterpene lactones, spiromarienonols A ( 1a ) and B ( 2a ), were isolated from the stem bark of Abies mariesii Masters (Pinaceae). Based on spectral data and biogenetic considerations, their unique three‐dimensional structures were determined to be (3R,7S,9R,23R)‐ ( 1a ) and (3R,7S,9S,23R)‐3,7‐dihydroxy‐8‐oxo‐7(8→9)abeo‐lanost‐24‐eno‐26,23‐lactone ( 2a ). Moreover, the potent activity of abiesenonic acid methyl ester ( 3 ) and abieslactone ( 4 ) against a disease‐oriented panel of 39 human cancer cell lines were investigated.  相似文献   

9.
A phytochemical investigation of the MeOH extract of Valeriana fauriei Briq . roots resulted in the isolation of two new sesquiterpenes, isovalerianin A (=(1β,4Z,6β,8α)‐8‐(acetyloxy)‐1,10‐dihydroxy‐6,11‐cyclogermacr‐4‐en‐15‐al=rel‐(1R,2Z,6S,7R,9R,10S)‐9‐(acetyloxy)‐6,7‐dihydroxy‐7,11,11‐trimethylbicyclo[8.1.0]undec‐2‐ene‐3‐carboxaldehyde; 1 ) and valerianin C (=(2α,3α,6α,8α)‐3‐(acetyloxy)‐2,4,8‐trihydroxyguai‐1(10)‐ene‐12,6‐lactone=rel‐(3R,3aS,4R,7S,8S,9R,9aR,9bR)‐8‐(acetyloxy)‐3a,4,5,7,8,9,9a,9b‐ octahydro‐4,7,9‐trihydroxy‐3,6,9‐trimethylazuleno[4,5‐b]furan‐2(3H)‐one; 2 ), together with six known compounds, i.e., camphor, methyl 4‐hydroxybenzoate, 2‐methoxybenzoic acid, benzoic acid, quercetin, and kaempferol. The structures of the compounds were established by detailed spectral analysis and comparison with previously reported data.  相似文献   

10.
A low‐temperature structure of ginkgolide A monohydrate, (1R,3S,3aS,4R,6aR,7aR,7bR,8S,10aS,11aS)‐3‐(1,1‐dimethylethyl)‐hexa­hydro‐4,7b‐di­hydroxy‐8‐methyl‐9H‐1,7a‐epoxymethano‐1H,6aH‐cyclo­penta­[c]­furo­[2,3‐b]­furo­[3′,2′:3,4]­cyclopenta­[1,2‐d]­furan‐5,9,12(4H)‐trione monohydrate, C20H24O9·H2O, obtained from Mo Kα data, is a factor of three more precise than the previous room‐temperature determination. A refinement of the ginkgolide A monohydrate structure with Cu Kα data has allowed the assignment of the absolute configuration of the series of compounds. Ginkgolide C sesquihydrate, (1S,2R,3S,3aS,4R,6aR,7aR,7bR,8S,10aS,11S,11aR)‐3‐(1,1‐di­methyl­ethyl)‐hexa­hydro‐2,4,7b,11‐tetrahydroxy‐8‐methyl‐9H‐1,7a‐epoxy­methano‐1H,6aH‐cyclopenta­[c]­furo­[2,3‐b]­furo­[3′,2′:3,4]­cyclo­penta­[1,2‐d]­furan‐5,9,12(4H)‐trione sesquihydrate, C20H24O11·1.5H2O, has two independent diterpene mol­ecules, both of which exhibit intramolecular hydrogen bonding between OH groups. Ginkgolide J dihydrate, (1S,2R,3S,3aS,4R,6aR,7aR,7bR,8S,10aS,11aS)‐3‐(1,1‐di­methyl­ethyl)‐hexa­hydro‐2,4,7b‐tri­hydroxy‐8‐methyl‐9H‐1,7a‐epoxy­methano‐1H,6aH‐cyclo­penta­[c]­furo­[2,3‐b]furo[3′,2′:3,4]­cyclo­penta­[1,2‐d]­furan‐5,9,12(4H)‐trione dihydrate, C20H24O10·2H2O, has the same basic skeleton as the other ginkgolides, with its three OH groups having the same configurations as those in ginkgolide C. The conformations of the six five‐membered rings are quite similar across ­ginkgolides A–C and J, except for the A and F rings of ginkgolide A.  相似文献   

11.
Two new highly oxidized humulane sesquiterpenes, mitissimols F ( 1 ) and G ( 2 ), were isolated from the fruiting bodies of Lactarius mitissimus. Their structures were elucidated by using extensive spectroscopic techniques including 1D‐ and 2D‐NMR experiments. The absolute configuration of mitissimol F ( 1 ) was determined by 1H‐NMR resolution of its diastereoisomeric α‐methoxy‐α‐(trifluoromethyl)benzeneacetates (MTPA). It was shown to be (1S,3E,6S,8R,9R,10S,11R)‐8,9 : 10,11‐diepoxy‐1,6‐dihydroxyhumul‐3‐en‐5‐one (=(1S,2R,4R,6S,8E,11S,12R)‐6,11‐dihydroxy‐1,6,10,10‐tetramethyl‐3,13‐dioxatricyclo[10.1.0.02,4]tridec‐8‐en‐7‐one).  相似文献   

12.
A new iridoid glycoside, methyl (3R,4R,4aS,7S,7aR)‐3‐hydroxy‐7‐methyl‐5‐oxooctahydrocyclopenta[c]pyran‐4‐carboxylate‐3‐O‐β‐d ‐(1′S,2′R,3′S,4′S,5′R)‐glucopyranoside, named loniceroside A, C17H26O10, ( 1 ), was obtained from the aerial parts of Lonicera saccata. Its structure was established based on an analysis of spectroscopic data, including 1D NMR, 2D NMR and HRESIMS, and the configurations of the chiral C atoms were determined by X‐ray crystallographic analysis. The single‐crystal structure reveals that the cyclopenta[c]pyran scaffold is formed from a five‐membered ring and a chair‐like six‐membered ring connected through two bridgehead chiral C atoms. In the solid state, the glucose group of ( 1 ) plays an important role in constructing an unusual supramolecular motif. The structure analysis revealed adjacent molecules linked together through intermolecular O—H…O hydrogen bonds to generate a banded structure. Furthermore, the banded structures are linked into a three‐dimensional network by interesting hydrogen bonds. Biogenetically, compound ( 1 ) carries a glucopyranosyloxy moiety at the C‐3 position, representing a rare structural feature for naturally occurring iridoid glycosides. The growth inhibitory effects against human cervical carcinoma cells (Hela), human lung adenocarcinoma cells (A549), human acute mononuclear granulocyte leukaemia (THP‐1) and the human liver hepatocellular carcinoma cell line (HepG2) were evaluated by the MTT method.  相似文献   

13.
Three new natural products, a lignoid glycoside 1 and two dimeric phenylpropanoids 2 and 3 , along with two known lignans 4 and 5 , were isolated from the BuOH‐ and CHCl3‐soluble fractions of the whole plant of Daphne oleoides (Thymelaeaceae). The structures of the new compounds were established by spectroscopic techniques, including 2D NMR, as 4‐(β‐D ‐glucopyranosyloxy)‐9′‐hydroxy‐3,3′,4′‐trimethoxy‐7′,9‐epoxylignan ( 1 ), (1R,2S,5R,6R)‐6‐(3‐ethyl‐4‐hydroxy‐5‐methoxyphenyl)‐2‐(4‐hydroxy‐3,5‐dimethoxyphenyl)‐3,7‐dioxabicyclo[3.3.0]octane ( 2 ) and (1R,2S,5R,6S)‐2,6‐bis(3‐ethyl‐4‐hydroxy‐5‐methoxyphenyl)‐3,7‐dioxabicyclo[3.3.0]octane ( 3 ). The other lignans were identified as (+)‐pinoresinol O‐(β‐D ‐glucopyranoside) ( 4 ) and (+)‐medioresinol ( 5 ).  相似文献   

14.
The isolation and structure elucidation of two new oleanane‐type triterpene glycosides, 29‐(β‐D ‐glucopyranosyloxy)‐2α,3β,23‐trihydroxyolean‐12‐en‐28‐oic acid (=(2α,3β,4α,29α)‐29‐(β‐D ‐glucopyranosyloxy)‐2,3,23‐trihydroxyolean‐12‐en‐28‐oic acid; 1 ) and its C(20)‐epimer, 30‐(β‐D ‐glucopyranosyloxy)‐2α,3β,23‐trihydroxyolean‐12‐en‐28‐oic acid (=(2α,3β,4α,29β)‐29‐β‐D ‐glucopyranosyloxy)‐2,3,23‐trihydroxyolean‐12‐en‐28‐oic acid; 2 ), and a novel nortriterpene glycoside, (17S)‐2α,18β,23‐trihydroxy‐3,19‐dioxo‐19(18→17)‐ abeo‐28‐norolean‐12‐en‐25‐oic acid β‐D ‐glucopyranosyl ester (=(1R,2S,4aS,4bR,6aR,7R,9R,10aS,10bS)‐3,4,4a,4b,5,6,6a,7,8,9,10,10a,10b,11‐tetradecahydro‐1‐hydroxy‐7‐(hydroxymethyl)‐3′,4′,4a,4b,7‐pentamethyl‐2′,8‐ dioxospiro[chrysene‐2(1H),1′‐cyclopentane]‐10a‐carboxylic acid β‐D ‐glucopyranosyl ester; 3 ) from Phlomis viscosa (Lamiaceae) are reported. The structures of the compounds were asigned by means of spectroscopic (IR, 1D‐ and 2D‐NMR, and LC‐ESI‐MS) and chemical (acetylation) methods.  相似文献   

15.
Six new lanostane triterpenes, artabotryols A, B, C1, C2, D, and E ( 1, 2, 3a, 3b, 4 , and 5 , resp.) have been isolated from the seeds of Artabotrys odoratissimus (Annonaceae). Their structures have been established as (3α,22S,25R)‐3‐hydroxy‐22,26‐epoxylanost‐8‐en‐26‐one ( 1 ), (3α,22S,25R)‐22,26‐epoxylanost‐8‐ene‐3,26‐diol ( 2 ), (3α,22S,25R,26R)‐26‐methoxy‐22,26‐epoxylanost‐8‐en‐3‐ol ( 3a ), (3α,22S,25R, 26S)‐26‐methoxy‐22,26‐epoxylanost‐8‐en‐3‐ol ( 3b ), (3α,22S,25R)‐3,22‐dihydroxylanost‐8‐en‐26‐oic acid ( 4 ) and (3α,7α,11α,22S,25R)‐3,7,11‐trihydroxy‐22,26‐epoxylanost‐8‐en‐26‐one ( 5 ) by spectroscopic studies and chemical correlations.  相似文献   

16.
The sex pheromone of the endoparasitoid insect Xenos peckii (Strepsiptera: Xenidae) was recently identified as (7E,11E)‐3,5,9,11‐tetramethyl‐7,11‐tridecadienal. Herein we report the asymmetric synthesis of three candidate stereostructures for this pheromone using a synthetic strategy that relies on an sp3–sp2 Suzuki–Miyaura coupling to construct the correctly configured C7‐alkene function. Comparison of 1H NMR spectra derived from the candidate stereostructures to that of the natural sex pheromone indicated a relative configuration of (3R*,5S*,9R*). Chiral gas chromatographic (GC) analyses of these compounds supported an assignment of (3R,5S,9R) for the natural product. Furthermore, in a 16‐replicate field experiment, traps baited with the synthetic (3R,5S,9R)‐enantiomer alone or in combination with the (3S,5R,9S)‐enantiomer captured 23 and 18 X. peckii males, respectively (mean±SE: 1.4±0.33 and 1.1±0.39), whereas traps baited with the synthetic (3S,5R,9S)‐enantiomer or a solvent control yielded no captures of males. These strong field trapping data, in combination with spectroscopic and chiral GC data, unambiguously demonstrate that (3R,5S,9R,7E,11E)‐3,5,9,11‐tetramethyl‐7,11‐tridecadienal is the X. peckii sex pheromone.  相似文献   

17.
The enantioselective total synthesis of (+)‐gracilamine ( 1 ) is described. The strategy features a diastereoselective phenolic coupling reaction followed by a regioselective intramolecular aza‐Michael reaction to construct the ABCE ring system. The configuration at C3a in 1 was controlled by the stereocenter at C9a, which was selectively generated (91 % ee) by an organocatalytic enantioselective aza‐Friedel–Crafts reaction developed by our research group. This synthesis revealed that the absolute configuration of (+)‐gracilamine is 3aR, 4S, 5S, 6R, 7aS, 8R, 9aS.  相似文献   

18.
As part of a project studying the secondary metabolites extracted from the Chilean flora, we report herein three new β‐agarofuran sesquiterpenes, namely (1S,4S,5S,6R,7R,8R,9R,10S)‐6‐acetoxy‐4,9‐dihydroxy‐2,2,5a,9‐tetramethyloctahydro‐2H‐3,9a‐methanobenzo[b]oxepine‐5,10‐diyl bis(furan‐3‐carboxylate), C27H32O11, ( II ), (1S,4S,5S,6R,7R,9S,10S)‐6‐acetoxy‐9‐hydroxy‐2,2,5a,9‐tetramethyloctahydro‐2H‐3,9a‐methanobenzo[b]oxepine‐5,10‐diyl bis(furan‐3‐carboxylate), C27H32O10, ( III ), and (1S,4S,5S,6R,7R,9S,10S)‐6‐acetoxy‐10‐(benzoyloxy)‐9‐hydroxy‐2,2,5a,9‐tetramethyloctahydro‐2H‐3,9a‐methanobenzo[b]oxepin‐5‐yl furan‐3‐carboxylate, C29H34O9, ( IV ), obtained from the seeds of Maytenus boaria and closely associated with a recently published relative [Paz et al. (2017). Acta Cryst. C 73 , 451–457]. In the (isomorphic) structures of ( II ) and ( III ), the central decalin system is esterified with an acetate group at site 1 and furoate groups at sites 6 and 9, and differ at site 8, with an OH group in ( II ) and no substituent in ( III ). This position is also unsubstituted in ( IV ), with site 6 being occupied by a benzoate group. The chirality of the skeletons is described as 1S,4S,5S,6R,7R,8R,9R,10S in ( II ) and 1S,4S,5S,6R,7R,9S,10S in ( III ) and ( IV ), matching the chirality suggested by NMR studies. This difference in the chirality sequence among the title structures (in spite of the fact that the three skeletons are absolutely isostructural) is due to the differences in the environment of site 8, i.e. OH in ( II ) and H in ( III ) and ( IV ). This diversity in substitution, in turn, is responsible for the differences in the hydrogen‐bonding schemes, which is discussed.  相似文献   

19.
Three new neolignans, (7S,8S,7′E)‐4,9‐dihydroxy‐3,7,3′,9′‐tetramethoxy‐8,4′‐oxyneolign‐7′‐ene ( 1 ), (7R,8S,7′E)‐4, 9‐dihydroxy‐3,7,3′,9′‐tetramethoxy‐8,4′‐oxyneolign‐7′‐ene ( 2 ), (7S,8S,7′E)‐5, 9‐dihydroxy‐3,7,3′,5′,9′‐pentamethoxy‐8,4′‐oxyneolign‐7′‐ene ( 3 ), and one new phenylpropanoid, threo‐5‐hydroxy‐3,7‐dimethoxyphenylpropane‐8,9‐diol ( 4 ), were isolated from the leaves and stems of Toona ciliata var. pubescens. Their structures were determined on the basis of spectroscopic analysis, especially 2D‐NMR, HR‐ESI‐MS, and CD data. The antiproliferative activities of these compounds against four tumor cell lines (A549, Colo 205, QGY‐7703, and LOVO) were also evaluated by MTT (=(3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐2H‐tetrazolium bromide) method.  相似文献   

20.
Enantiomerically pure (+)‐(1S,4S,5S,6S)‐6‐endo‐(benzyloxy)‐5‐exo‐{[(tert‐butyl)dimethylsilyl]oxy}‐7‐oxabicyclo[2.2.1]heptan‐2‐one ((+)‐ 5 ) and its enantiomer (−)‐ 5 , obtained readily from the Diels‐Alder addition of furan to 1‐cyanovinyl acetate, can be converted with high stereoselectivity into 8‐oxabicyclo[3.2.1]octane‐2,3,4,6,7‐pentol derivatives (see 23 – 28 in Scheme 2). A precursor of them, (1R,2S,4R,5S,6S,7R,8R)‐7‐endo‐(benzyloxy)‐8‐exo‐hydroxy‐3,9‐dioxatricyclo[4.2.1.02,4]non‐5‐endo‐yl benzoate ((−)‐ 19 ), is transformed into (1R,2R,5S, 6S,7R,8S)‐6‐exo,8‐endo‐bis(acetyloxy)‐2‐endo‐(benzyloxy)‐4‐oxo‐3,9‐dioxabicyclo[3.3.1]non‐7‐endo‐yl benzoate ((−)‐ 43 ) (see Scheme 5). The latter is the precursor of several protected 2,6‐anhydrohepturonic acid derivatives such as the diethyl dithioacetal (−)‐ 57 of methyl 3,5‐di‐O‐acetyl‐2,6‐anhydro‐4‐O‐benzoyl‐D ‐glycero‐D ‐galacto‐hepturonate (see Schemes 7 and 8). Hydrolysis of (−)‐ 57 provides methyl 3,5‐di‐O‐acetyl‐2,6‐anhydro‐4‐O‐benzoyl‐D ‐glycero‐D ‐galacto‐hepturonate 48 that undergoes highly diastereoselective Nozaki‐Oshima condensation with the aluminium enolate resulting from the conjugate addition of Me2AlSPh to (1S,5S,6S,7S)‐7‐endo‐(benzyloxy)‐6‐exo‐{[(tert‐butyl)dimethylsilyl]oxy}‐8‐oxabicyclo[3.2.1]oct‐3‐en‐2‐one ((−)‐ 13 ) derived from (+)‐ 5 (Scheme 12). This generates a β‐C‐mannopyranoside, i.e., methyl (7S)‐3,5‐di‐O‐acetyl‐2,6‐anhydro‐4‐O‐benzoyl‐7‐C‐[(1R,2S,3R,4S,5R,6S,7R)‐6‐endo‐(benzyloxy)‐7‐exo‐{[(tert‐butyl)dimethylsilyl]oxy}‐4‐endo‐hydroxy‐2‐exo‐(phenylthio)‐8‐oxabicyclo[3.2.1]oct‐3‐endo‐yl]‐L ‐glycero‐D ‐manno‐heptonate ((−)‐ 70 ; see Scheme 12), that is converted into the diethyl dithioacetal (−)‐ 75 of methyl 3‐O‐acetyl‐2,6‐anhydro‐4,5‐dideoxy‐4‐C‐{[methyl (7S)‐3,5,7‐tri‐O‐acetyl‐2,6‐anhydro‐4‐O‐benzoyl‐L ‐glycero‐D ‐manno‐heptonate]‐7‐C‐yl}‐5‐C‐(phenylsulfonyl)‐L ‐glycero‐D ‐galacto‐hepturonate ( 76 ; see Scheme 13). Repeating the Nozaki‐Oshima condensation to enone (−)‐ 13 and the aldehyde resulting from hydrolysis of (−)‐ 75 , a (1→3)‐C,C‐linked trisaccharide precursor (−)‐ 77 is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号