首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
三乙醇胺催化合成7,7—二氯双环[4,1,0]庚烷   总被引:5,自引:0,他引:5  
田志新  俞善信 《合成化学》1999,7(3):317-320
报道了三乙醇胺催化二氯卡宾与环己烯的加成反应,考察了催化剂用量、氯仿用量、氢氧化钠浓度,反应时间、反应温度对产品7,7-二氯双环「4,1,0」庚烷收率的影响,在优化条件下,产品收率可达90.0%  相似文献   

2.
The reaction of Cr(CO)6 with 7,7-dichloro-3,4-benzobicyclo[4.1.0]heptane gave the correspondingexo- andendo-chromium tricarbonyl complexes in a ratio of 4.5:1. The structures of the resulting compounds were established by NMR spectroscopy, mass spectrometry, and X-ray structural analysis. Reduction of dichlorobenzobicycloheptane and its chromium tricarbonyl complexes with LiAlH4 affordedexo- andendo-7-chloro-3,4-benzobicyclo[4.1.0]heptanes in a 3.5:1 ratio. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 720–724, April, 1998.  相似文献   

3.
IntroductionPhotochemical reactions, which involve a three-membered ring, have been of great interest to experi-mental photochemists[1—10]. A main reason for thisphenomenon is that the cyclopropane ring exhibits somereaction characteristics of double bon…  相似文献   

4.
Ab initio multiconfigurational CASSCF/MP2 method with the 6‐31G* basis set has been employed in studying the photochemistry of bicyclo[4.1.0]hept‐2‐ene upon direct photolysis. Our calculations involve the ground state (S0) and excited states (S1, T1, and T2). The ground‐state reaction pathways corresponding to the formation of the six products derived from bicyclo[4.1.0]hept‐2‐ene via two important diradical intermediates (D1 and D2) were mapped. It was found that there are various crossing points (conical intersections and singlet–triplet crossings) in the regions near D1 and D2. These crossing points imply that direct photolysis can lead to two possible radiationless relaxation routes: (1) S1 → S0, (2) S1 → T2 → T1 → S0. Computation indicates that the second route is not a competitive path with the first route during direct photolysis. The first route is initiated by barrierless cyclopropane bond cleavage to form two singlet excited diradical intermediates, followed by efficient decay to the ground‐state surface via three S1/S0 conical intersections in the regions near the diradical intermediates. All six ground‐state products can be formed via the three conical intersections almost without barrier after the decays. The barriers separating the diradical minima on S1 from the S1/S0 conical intersections were found to be very small with respect to the vertical excitation energy, which can explain why the product distribution is independent of excitation wavelength. Triplet surfaces are not involved in the first route, which agrees with the fact that the product contribution was unchanged by the addition of naphthalene. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

5.
Two series of 7‐arylazo‐7H‐3‐(2‐methyl‐1H‐indol‐3‐yl)pyrazolo[5,1‐c][1,2,4]triazol‐6(5H)‐ones 4 and 7‐arylhydrazono‐7H‐3‐(2‐methyl‐1H‐indol‐3‐yl)‐[1,2,4]triazolo[3,4‐b][1,3,4]thiadiazines 7 were prepared via reactions of 4‐amino‐3‐mercapto‐5‐(2‐methyl‐1H‐indol‐3‐yl)‐1,2,4‐triazole 1 with ethyl arylhydrazono‐chloroacetate 2 and N‐aryl‐2‐oxoalkanehydrazonoyl halides 5 , respectively. A possible mechanism is proposed to account for the formation of the products. The biological activity of some of these products was also evaluated.  相似文献   

6.
A total synthesis of (±)‐boonein ( 8 ) from bicyclo[2.2.1]ketone 9 is described. Bicyclo[3.2.1]lactone 10 is the key intermediate.  相似文献   

7.
Dinuclear Palladium(II), Platinum(II), and Iridium(III) Complexes of Bis[imidazol‐4‐yl]alkanes The reaction of bis(1,1′‐triphenylmethyl‐imidazol‐4‐yl) alkanes ((CH2)n bridged imidazoles L(CH2)nL, n = 3–6) with chloro bridged complexes [R3P(Cl)M(μ‐Cl)M(Cl)PR3] (M = Pd, Pt; R = Et, Pr, Bu) affords the dinuclear compounds [Cl2(R3P)M–L(CH2)nL–M(PR3)Cl2] 1 – 17 . The structures of [Cl2(Et3P)Pd–L(CH2)3L–Pd(PEt3)Cl2] ( 1 ), [Cl2(Bu3P)Pd–L(CH2)4L–Pd(PBu3)Cl2] ( 10 ), [Cl2(Et3P)Pd–L(CH2)5L–Pd(PEt3)Cl2] ( 3 ), [Cl2(Et3P)Pt–L(CH2)3L–Pt(PEt3)Cl2] ( 13 ) with trans Cl–M–Cl groups were determined by X‐ray diffraction. Similarly the complexes [Cl2(Cp*)Ir–L(CH2)nL–Ir(Cp*)Cl2] (n = 4–6) are obtained from [Cp*(Cl)Ir(μ‐Cl)2Ir(Cl)Cp*] and the methylene bridged bis(imidazoles).  相似文献   

8.
A set of ten C1‐symmetric chiral bicyclo[2.2.2]octa‐2,5‐dienes (bod*) 2 (Fig. 1) were tested as ligands in Rh‐catalyzed arylation reactions. The 1,4‐addition of arylboronic acids to cyclohex‐2‐en‐1‐one, cyclopent‐2‐en‐1‐one, and tert‐butyl cinnamate proceeded smoothly with excellent enantioselectivities (up to 99% ee; Tables 13). The challenging 1,2‐addition of triphenylboroxine to N‐[(4‐nitrophenyl)sulfonyl]imines yielded the product in high yield and in good enantioselectivity (up to 92% ee; Table 4). Generally, the use of C1‐symmetric chiral bod* ligands bearing bulky substituents resulted in lower enantioselectivities, whereas several electron‐poor and electron‐rich bod* ligands gave higher enantioselectivities than the benchmark ligands reported in literature.  相似文献   

9.
The cyclization of 1‐amino‐2‐mercapto‐5‐[5‐methyl‐1‐(4‐methylphenyl)‐1,2,3‐triazol‐4‐yl]‐1,3,4‐triazole with various α‐haloketone in absolute ethanol yields 7H‐3‐[5‐methyl‐1‐(4‐methylphenyl)‐1,2,3‐triazol‐4‐yl]‐6‐substituted‐s‐triazolo[3,4‐b]‐1,3,4‐thiadiazines and their structures are established by elemental analysis, MS, IR and 1H NMR spectral data.  相似文献   

10.
A novel and efficient procedure for the synthesis of new 7‐pyrimidinylpyrimido[4,5‐d]pyrimidinone derivatives was elaborated via the base‐promoted cyclodimerization reaction of 5‐[(dimethylamino)methylidene]‐6‐iminopyrimidine‐2,4(1H,3H)‐dione hydrochlorides. In an analogous manner, a 2‐thioxo analog was prepared starting with the corresponding 2‐thioxopyrimidin‐4‐one.  相似文献   

11.
Five new 6‐ferrocenyl‐3‐substituted 7H‐1,2,4‐triazolo[3, 4‐b]‐1,3,4‐thiadiazines ( 3a‐e ) have been synthesized and characterized on the basis of elemental analyses and spectral data. The antiproliferative activities were examined in two human cell lines (BJ and HT 1080) with the acid phosphatase assay. The results showed that all compounds could reduce cell viability. The significant difference between the two cell lines was that fibrosarcoma HT 1080 cells could indeed be more susceptible to the compounds than the normal fibroblast BJ cells.  相似文献   

12.
13.
A series of novel 6‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]‐7‐phenylpyrazolo[1,5‐a]pyrimidines, 5‐phenyl‐6‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]imidazo[1,2‐a]pyrimidines, and 2‐phenyl‐3‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]pyrimido[1,2‐a]benzimidazoles have been synthesized in four steps starting with 2‐hydroxyacetophenone. The intermediate 3‐[(1,3,4‐thiadiazol‐2‐yl)sulfanyl]‐4H‐1‐benzopyran‐4‐ones reacted with pyrazol‐3‐amines, 5‐methylpyrazol‐3‐amine, and 1H‐imidazol‐2‐amine, 1H‐benzimidazol‐2‐amine via a cyclocondensation to give the title compounds in the presence of MeONa as base, respectively. The approach affords the target compounds in acceptable‐to‐good yields. The new compounds were characterized by their IR, NMR, and HR mass spectra.  相似文献   

14.
4‐Methyl‐6,8‐dihydroxy‐7H‐benz[de]anthracen‐7‐one was isolated from the sap of Aloe by column chromatography. Its 1H and 13C NMR spectra were completely assigned by utilizing two‐dimensional 1H‐detected heteronuclear one‐bond (HMQC) and multiple‐bond (HMBC) chemical shift correlation experiments together with 1H–1H COSY and DEPT techniques. These techniques were also valuable in assigning the protons and carbons of those benzanthrone compounds which were previously incompletely reported because of the overlap of proton signals. The molecular structure was elucidated by 2D NMR analysis. The spectral properties (MS, IR and UV) are also presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Acid‐catalyzed rearrangement of 6‐phenylbicyclo[3.2.0]heptan‐6‐ol gave 1,1′‐biphenyl and 1,1′‐biphenyl‐carbaldehydes in small amounts as well as the expected rearrangement products. A detailed study of the reaction mechanism revealed that the conversion occurs via an oxidative process through the consecutive formation of cycloheptadienes, cycloheptatrienes, and 1,1′‐biphenyls. The acid‐catalyzed rearrangement of 6‐phenylbicyclo[3.2.0]hept‐2‐en‐6‐ols gave 1‐ and 2‐phenylcycloheptatrienes directly, from which 1,1′‐biphenyl and 1,1′‐biphenyl‐carbaldehydes were obtained by oxidation.  相似文献   

16.
2-Thioxo-1,2-dihydropyridine derivatives 2a, 2b were reacted with methyl iodide to give 2-methylthiopyridines 3a, 3b, which were reacted with hydrazine hydrate to produce 3-aminopyrazolo[5,4-b]pyridines 4a, 4b. Compounds 4a, 4b were diazotized to afford the corresponding diazonium salts 5a, 5b, which were reacted with some active methylene compounds 6a-6h to give the corresponding pyrido[2′,3′ : 3,4]pyrazole[5,1-c][1,2,4]triazines 7-14.  相似文献   

17.
The highly reactive 1 : 1 intermediate generated in the reaction between dialkyl acetylenedicarboxylate (=but‐2‐ynedioic acid dialkyl ester) 4 and triphenylphosphine was trapped by 2‐amino‐4‐oxo‐4H‐1‐benzopyran‐3‐carboxaldehydes 5 to yield highly functionalized dialkyl‐1,5‐dihydro‐5‐oxo‐1‐phenyl‐2H‐[1]benzopyrano[2,3‐b]pyridine‐2,3‐dicarboxylates in high yield.  相似文献   

18.
A novel side‐chain polypseudorotaxanes P4VBVBu/CB[7] was synthesized from poly‐Nn‐butyl‐N′‐(4‐vinylbenzyl)‐4,4′‐bipyridinium bromide chloride (P4VBVBu) and cucurbit [7]uril (CB[7]) in water by simple stirring at room temperature. CB[7] beads are localized on viologen units in side chains of polypseudorotaxanes as shown by 1H NMR, IR, XRD, and UV–vis studies, and it is considered that the hydrophobic and charge‐dipole interactions are the driving forces. TGA data show that thermal stability of the polypseudorotaxanes increases with the adding of CB[7] threaded. DLS data show that P4VBVBu and CB[7] could form polypseudorotaxanes, and the average hydrodynamic radius of the polypseudorotaxanes increases with increasing the concentration of CB[7]. The typical cyclic voltammograms indicate that the oxidation reduction characteristic of P4VBVBu is remarkably affected by the addition of CB[7] because of the formation of polypseudorotaxanes and the shielding effects of CB[7] threaded on the viologen units of polypseudorotaxanes. With the increase of the concentration of KBr or K2SO4, the formation of the polypseudorotaxanes was inhibited due to the shielding effects of both Br? or SO to viologen ion and K+ to CB[7] by UV–vis. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2135–2142, 2010  相似文献   

19.
3‐Amino‐benzo[d]imidazo[2,1‐b]thiazoles were synthesized in moderate to good yields in the presence of NH4Cl via a one pot procedure. All the products were characterized by 1H NMR, IR, HRMS.  相似文献   

20.
New 7‐Methyl‐3‐substituted‐1,2,4‐triazolo[3,4‐b]benzothiazoles were synthesized from p‐methylaniline to 5 with various aromatic carbonic acids. The yielded product 6a‐j was investigated with Elemental analyses, NMR, MS and IR techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号