首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Chemically induced dynamic nuclear polarization (CIDNP) observed during electron transfer (ET) reactions of tertiary amines such as DABCO ( 1 ) or Et3N ( 2 ) with a wide range of electron acceptors support the involvement of amine radical‐cations (e.g., 1. + or 2. + ) as key intermediates. Radical ions such as 2. + may be deprotonated, generating neutral aminoalkyl radicals (e.g., 2. ). When generated by reaction with an electron acceptor of energetically low triplet state such as naphthalene (1Naph*), the resulting pair 2. + /Naph.? reacts mostly by reverse electron transfer (RET) from triplet pairs populating the naphthalene triplet state.  相似文献   

2.
Using ultrafast fluorescence upconversion and mid‐infrared spectroscopy, we explore the role of hydrogen bonds in the photoinduced electron transfer (ET) between 9‐fluorenone (FLU) and the solvents trimethylamine (TEA) and dimethylamine (DEA). FLU shows hydrogen‐bond dynamics in the methanol solvent upon photoexcitation, and similar effects may be anticipated when using DEA, whereas no hydrogen bonds can occur in TEA. Photoexcitation of the electron‐acceptor dye molecule FLU with a 400 nm pump pulse induces ultrafast ET from the amine solvents, which is followed by 100 fs IR probe pulses as well as fluorescence upconversion, monitoring the time evolution of marker bands of the FLU S1 state and the FLU radical anion, and an overtone band of the amine solvent, marking the transient generation of the amine radical cation. A comparison of the experimentally determined forward charge‐separation and backward charge‐recombination rates for the FLU‐TEA and FLU‐DEA reaction systems with the driving‐force dependencies calculated for the forward and backward ET rates reveals that additional degrees of freedom determine the ET reaction dynamics for the FLU‐DEA system. We suggest that hydrogen bonding between the DEA molecules plays a key role in this behaviour.  相似文献   

3.
Geometric isomerizations of olefins following photoinduced electron transfer (PET) are classified according to the relative energetic positions of the radical‐ion pairs and the reactant triplets. Each class exhibits characteristic CIDNP (chemically induced dynamic nuclear polarization) effects, for which typical examples are presented. Time‐resolved CIDNP experiments on the system triphenylamine/fumarodinitrile (= (2E)‐but‐2‐enedinitrile), where formation of the olefin triplet is impossible, show that there is also no isomerization of the olefin radical anion. With triisopropylamine or fumarodinitrile as the reaction partner for 4,4′‐dimethoxystilbene (= 1,1′‐[(1E)‐ethane‐1,2‐diyl]bis[4‐methoxybenzene]), both oxidative and reductive quenching give almost mirror‐image CIDNP spectra because of the pairing theorem; reverse electron transfer of the triplet radical‐ion pairs populates the stilbene triplet only, which then isomerizes. With anethole (= 1‐methoxy‐4‐(prop‐1‐enyl)benzene; M), the competition between electron return of triplet pairs to give either M + 3X or 3M + X was studied by using a second isomerizable olefin (diethyl fumarate (= diethyl (2E)‐but‐2‐enedioate) or cinnamonitrile (= (2E)‐3‐phenylprop‐2‐enenitrile)) as the reaction partner X. Classes can be changed by employing PET sensitization. With ACN (anthracene‐9‐carbonitrile) as the sensitizer, anethole does not produce any directly observable polarizations, but a substitution of ACN.? by the radical anion of 1,4‐benzoquinone (= cyclohexa‐2,5‐diene‐1,4‐dione) or fumarodinitrile within the lifetime of the spin‐correlated radical‐ion pairs leads to very strong CIDNP signals that reflect the effects of both pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号