首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Time-resolved electron paramagnetic resonance (TREPR) spectra of spin-polarized transient radicals in liquid solution, generated in a continuous flow-system of a W-band (95 GHz) high-field (3.4 T) EPR spectrometer, are reported. The organic free radicals are created by laser flash photolysis of ω,ω-dimethoxy-ω-phenylacetophenone (DMPA) and diphenyl-2,4,6-trimethylbenzoil phosphine oxide (TMDPO) inside the microwave cavity, and are observed at 10 ns to 20 μs delay times after the laser pulse. The analysis of the positions of the well-separated EPR signals at W-band yields the g-values of the observable transients with high accuracy. The chemically induced dynamic electron polarization (CIDEP) patterns are different from those in conventional X-band (9.5 GHz) EPR. This is due to different spin relaxation times at different magnetic fields, to field-dependent CIDEP mechanisms operating in the studied systems, and to the increased Boltzmann polarization at high fields.  相似文献   

2.
Abstract— Steady-state and time-resolved electron paramagnetic resonance (TREPR) experiments are described. Comparison of the TREPR continuous wave method to other time domain EPR techniques such as Fourier transform EPR (FT-EPR) is made, and the advantages and disadvantages of each are presented. The role played by several mechanisms of chemically induced dynamic electron spin polarization (CIDEP) in the appearance of the spectra is explained. The advantages of using higher frequency spectrometers than the standard X-band (9.5 GHz) are presented and discussed. Examples are presented that are relevant to organic photochemistry and electron donor-acceptor chemistry. The use of TREPR to study polymer photodegradation, polymer chain dynamics, free radical initiator chemistry and biradical spin exchange interactions is described. Emphasis is placed on magnetic field effects studied by multiple frequency TREPR in these systems. Finally, several future directions in the field are discussed in terms of new developments in microwave and magnetic field technology.  相似文献   

3.
4.
Time-resolved magnetic resonance experiments (TREPR and CIDNP) are used to investigate previously unobserved redox chemistry of the surfactant dioctyl sulfosuccinate ester (AOT) using the photoexcited triplet state of anthraquinone 2,6-disulfonate (3AQDS*). Several different free radicals resulting from two independent oxidation pathways (electron transfer and hydrogen abstraction) are observed. These include the radical ions of AQDS and sulfite from electron-transfer processes, carbon-centered radicals from H-atom abstraction reactions, and an additional carbon-centered radical formed by electron transfer from the AOT sulfonate head group followed by the loss of SO3. The radicals exhibit intense chemically induced dynamic electron spin polarization (CIDEP) in their TREPR spectra. The intensity ratios of the observed TREPR signals for each radical depend on the water pool size and temperature, which in turn affect the predominant CIDEP mechanism. All signal carriers are accounted for by simulation, and CIDNP results provide strong supporting evidence for the assignments.  相似文献   

5.
The understanding of biomolecular function is coupled to knowledge about the structure and dynamics of these biomolecules, preferably acquired under native conditions. In this regard, pulsed dipolar EPR spectroscopy (PDS) in conjunction with site‐directed spin labeling (SDSL) is an important method in the toolbox of biophysical chemistry. However, the currently available spin labels have diverse deficiencies for in‐cell applications, for example, low radical stability or long bioconjugation linkers. In this work, a synthesis strategy is introduced for the derivatization of trityl radicals with a maleimide‐functionalized methylene group. The resulting trityl spin label, called SLIM, yields narrow distance distributions, enables highly sensitive distance measurements down to concentrations of 90 nm , and shows high stability against reduction. Using this label, the guanine‐nucleotide dissociation inhibitor (GDI) domain of Yersinia outer protein O (YopO) is shown to change its conformation within eukaryotic cells.  相似文献   

6.
Photolysis of trifluoromethyl ketones (TFMKs) 1a–1e versus the non‐fluorinated ketones 2a–2b in the presence of radical initiators by electron paramagnetic resonance spectroscopy has been studied for the first time. The transient radicals generated after irradiation of the ketones were identified by trapping with 2‐methyl‐2‐nitrosopropane (MNP) and 2,4,6‐tri‐tert‐butylnitrosobenzene (TTBNB) as spin traps. TTBNB is a powerful, particularly useful spin trap in these kinds of processes producing anilino and nitroxyl spin adducts due to the ambivalent reactivity on the N and O atoms. In the presence of t‐butylperoxide, short‐chain TFMKs, such as 1,1,1‐trifluoroacetone (1d) and hexafluoroacetone (1e), give rise to detection of the elusive trifluoromethyl radical. In contrast, long‐chain TFMKs did not provide clues to prove formation of the trifluoromethyl radical but instead to radicals derived by abstraction of one α‐methylene proton to the carbonyl. Although TFMKs are quite stable to photodegradation in the absence of initiator, methyl ketone 2b and phenyl ketone 3 produce radicals resulting from abstraction of a γ‐hydrogen to the carbonyl group. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The search for main‐group element‐based radicals is one of the main research topics in contemporary chemistry because of their fascinating chemical and physical properties. The Group 15 element‐centered radicals mainly feature a V‐shaped two coordinate structure, with a couple of radical cations featuring trigonal tricoordinated geometry. Now, nontrigonal compounds R3E (E=P, As, Sb) were successfully synthesized by introducing a new rigid tris‐amide ligand. The selective one‐electron reduction of R3E afforded the first stable tricoordinate pnictogen‐centered radical anion salts; the pnictogen atoms retain planar T‐shaped structures. EPR spectroscopy and calculations reveal that the spin density mainly resides at the p orbitals of the pnictogen atoms, which is perpendicular to the N3E planes.  相似文献   

8.
Understanding the mechanism of efficient photoinduced electron‐transfer processes is essential for developing molecular systems for artificial photosynthesis. Towards this goal, we describe the synthesis of a donor–acceptor dyad comprising a zinc porphyrin donor and a tetracationic cyclobis(paraquat‐p‐phenylene) (CBPQT4+) acceptor. The X‐ray crystal structure of the dyad reveals the formation of a dimeric motif through the intermolecular coordination between the triazole nitrogen and the central Zn metal of two adjacent units of the dyad. Photoinduced electron transfer within the dyad in MeCN was investigated by femtosecond and nanosecond transient absorption spectroscopy, as well as by transient EPR spectroscopy. Photoexcitation of the dyad produced a weakly coupled ZnP+.–CBPQT3+. spin‐correlated radical‐ion pair having a τ=146 ns lifetime and a spin–spin exchange interaction of only 0.23 mT. The long radical‐ion‐pair lifetime results from weak donor–acceptor electronic coupling as a consequence of having nine bonds between the donor and the acceptor, and the reduction in reorganization energy for electron transfer caused by charge dispersal over both paraquat units within CBPQT3+..  相似文献   

9.
Summary: A novel method for measuring termination rate coefficients, kt, in free‐radical polymerization is presented. A single laser pulse is used to instantaneously produce photoinitiator‐derived radicals. During subsequent polymerization, radical concentration is monitored by time‐resolved electron spin resonance (ESR) spectroscopy. The size of the free radicals, which exhibits a narrow distribution increases linearly with time t, which allows the chain‐length dependence of kt to be deduced. The method will be illustrated using dodecyl methacrylate polymerization as an example.

Two straight lines provide a very satisfactory representation of the chain‐length dependence of kt over the entire chain‐length region (cR = radical concentration).  相似文献   


10.
A potentially biocompatible class of spin‐labeled macromolecules, spin‐labeled (SL) heparins, and their use as nuclear magnetic resonance (NMR) signal enhancers are introduced. The signal enhancement is achieved through Overhauser‐type dynamic nuclear polarization (DNP). All presented SL‐heparins show high 1H DNP enhancement factors up to E=?110, which validates that effectively more than one hyperfine line can be saturated even for spin‐labeled polarizing agents. The parameters for the Overhauser‐type DNP are determined and discussed. A striking result is that for spin‐labeled heparins, the off‐resonant electron paramagnetic resonance (EPR) hyperfine lines contribute a non‐negligible part to the total saturation, even in the absence of Heisenberg spin exchange (HSE) and electron spin‐nuclear spin relaxation (T1ne). As a result, we conclude that one can optimize the use of, for example, biomacromolecules for DNP, for which only small sample amounts are available, by using heterogeneously distributed radicals attached to the molecule.  相似文献   

11.
We report the synthesis and characterisation of new examples of meso‐hydroxynickel(II) porphyrins with 5,15‐diphenyl and 10‐phenyl‐5,15‐diphenyl/diaryl substitution. The OH group was introduced by using carbonate or hydroxide as nucleophile by using palladium/phosphine catalysis. The NiPor?OHs exist in solution in equilibrium with the corresponding oxy radicals NiPor?O.. The 15‐phenyl group stabilises the radicals, so that the 1H NMR spectra of {NiPor?OH} are extremely broad due to chemical exchange with the paramagnetic species. The radical concentration for the diphenylporphyrin analogue is only 1 %, and its NMR line‐broadening was able to be studied by variable‐temperature NMR spectroscopy. The EPR signals of NiPor?O. are consistent with somewhat delocalised porphyrinyloxy radicals, and the spin distributions calculated by using density functional theory match the EPR and NMR spectroscopic observations. Nickel(II) meso‐hydroxy‐10,20‐diphenylporphyrin was oxidatively coupled to a dioxo‐terminated porphodimethene dyad, the strongly red‐shifted electronic spectrum of which was successfully modelled by using time‐dependent DFT calculations.  相似文献   

12.
Density functional theory calculations (UB3LYP/EPR‐III) for a series of radicals and radical ions were performed to check the internal consistency of the method and its implications to the theoretical concepts of electron paramagnetic resonance such as π–σ spin polarization, hyperconjugation and phenyl hyperconjugation. In the second part, experimental data for seven radicals (43 hyperfine coupling constants) are compared with calculations, yielding a correlation of r2 = 0.97. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Site‐directed spin labeling (SDSL) combined with continuous wave electron paramagnetic resonance (cw EPR) spectroscopy is a powerful technique to reveal, at the residue level, structural transitions in proteins. SDSL‐EPR is based on the selective grafting of a paramagnetic label on the protein under study, followed by cw EPR analysis. To extract valuable quantitative information from SDSL‐EPR spectra and thus give reliable interpretation on biological system dynamics, numerical simulations of the spectra are required. Such spectral simulations can be carried out by coding in MATLAB using functions from the EasySpin toolbox. For non‐expert users of MATLAB, this could be a complex task or even impede the use of such simulation tool. We developed a graphical user interface called SimLabel dedicated to run cw EPR spectra simulations particularly coming from SDSL‐EPR experiments. Simlabel provides an intuitive way to visualize, simulate, and fit such cw EPR spectra. An example of SDSL‐EPR spectra simulation concerning the study of an intrinsically disordered region undergoing a local induced folding is described and discussed. We believe that this new tool will help the users to rapidly obtain reliable simulated spectra and hence facilitate the interpretation of their results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
There is a contradiction as to the initial spatial separation ri of the two transient 2‐cyanoprop‐2‐yl radicals (Me2 ? CN) formed by flash photolysis of 2,2′‐azobis(isobutyronitrile) (AIBN) in solvents of various viscosities. The cage effect, expressed in terms of the in‐cage termination probability of the resulting radicals, is predicted correctly by classical Langevin models assuming a decrease of ri with increasing viscosity. However, the electron‐spin polarization of the radicals escaping the primary cage clearly indicates that the initial separation distance ri is independent of the solution viscosity. This obvious discrepancy can be reconciled by accounting for the strong electric dipole moments of these radicals and the resulting inter‐radical dipole? dipole interaction potential. We propose a primary‐caging model for polar radicals in solution based on an attractive inter‐radical mean‐force potential. The model is applied to the flash photolysis of AIBN and shown to describe properly the viscosity dependence of both the in‐cage termination probability (cage effect) and the electron‐spin polarization of the escaping 2‐cyanoprop‐2‐yl radicals.  相似文献   

15.
Two self‐assembled supramolecular donor–acceptor triads consisting of AlIII porphyrin (AlPor) with axially bound naphthalenediimide (NDI) as an acceptor and tetrathiafulvalene (TTF) as a secondary donor are reported. In the triads, the NDI and TTF units are attached to AlIII on opposite faces of the porphyrin, through covalent and coordination bonds, respectively. Fluorescence studies show that the lowest excited singlet state of the porphyrin is quenched through electron transfer to NDI and hole transfer to TTF. In dichloromethane hole transfer to TTF dominates, whereas in benzonitrile (BN) electron transfer to NDI is the main quenching pathway. In the nematic phase of the liquid crystalline solvent 4‐(n‐pentyl)‐4′‐cyanobiphenyl (5CB), a spin‐polarized transient EPR spectrum that is readily assigned to the weakly coupled radical pair TTF.+NDI.? is obtained. The initial polarization pattern indicates that the charge separation occurs through the singlet channel and that singlet–triplet mixing occurs in the primary radical pair. At later time the polarization pattern inverts as a result of depopulation of the states with singlet character by recombination to the ground state. The singlet lifetime of TTF.+NDI.? is estimated to be 200–300 ns, whereas the triplet lifetime in the approximately 350 mT magnetic field of the X‐band EPR spectrometer is about 10 μs. In contrast, in dichloromethane and BN the lifetime of the charge separation is <10 ns.  相似文献   

16.
Fourier transform (FT) EPR was used to study the pulsed-laser-induced electron transfer from porphyrins to quinones in homogeneous and micellar solutions. By monitoring the EPR signal of the quinone anion radicals as a function of delay time (τd) between laser and microwave pulses, with τd ranging from nanoseconds to 1 millisecond, information was obtained on the kinetics of free radical formation and decay. The time evolution of the signal also gave an insight into the chemically induced dynamic electron polarization (CIDEP) mechanisms that affect signal amplitudes. FT-EPR spectra of electron transfer products generated in micellar solution provide evidence for the generation of long-lived spincorrelated radical pairs.  相似文献   

17.
A proton‐coupled electron transfer (PCET) process plays an important role in the initial step of lipoxygenases to produce lipid radicals which can be oxygenated by reaction with O2 to yield the hydroperoxides stereoselectively. The EPR spectroscopic detection of free lipid radicals and the oxygenated radicals (peroxyl radicals) together with the analysis of the EPR spectra has revealed the origin of the stereo‐ and regiochemistry of the reaction between O2 and linoleyl (= (2Z)‐10‐carboxy‐1‐[(1Z)‐hept‐1‐enyl]dec‐2‐enyl) radical in lipoxygenases. The direct determination of the absolute rates of H‐atom‐transfer reactions from a series of unsaturated fatty acids to the cumylperoxyl (= (1‐methyl‐1‐phenylethyl)dioxy) radical by use of time‐resolved EPR at low temperatures together with detailed kinetic investigations on both photoinduced and thermal electron‐transfer oxidation of unsaturated fatty acids provides the solid energetic basis for the postulated PCET process in lipoxygenases. A strong interaction between linoleic acid (= (9Z,12Z)‐octadeca‐9,12‐dienoic acid) and the reactive center of the lipoxygenases (FeIII? OH) is suggested to be involved to make a PCET process to occur efficiently, when an inner‐sphere electron transfer from linoleic acid to the FeIII state is strongly coupled with the proton transfer to the OH group.  相似文献   

18.
Drug binding to human serum albumin (HSA) has been characterized by a spin‐labeling and continuous‐wave (CW) EPR spectroscopic approach. Specifically, the contribution of functional groups (FGs) in a compound on its albumin‐binding capabilities is quantitatively described. Molecules from different drug classes are labeled with EPR‐active nitroxide radicals (spin‐labeled pharmaceuticals (SLPs)) and in a screening approach CW‐EPR spectroscopy is used to investigate HSA binding under physiological conditions and at varying ratios of SLP to protein. Spectral simulations of the CW‐EPR spectra allow extraction of association constants (KA) and the maximum number (n) of binding sites per protein. By comparison of data from 23 SLPs, the mechanisms of drug–protein association and the impact of chemical modifications at individual positions on drug uptake can be rationalized. Furthermore, new drug modifications with predictable protein binding tendency may be envisaged.  相似文献   

19.
The shelf aging of irradiated ultrahigh‐molecular‐weight polyethylene (UHMWPE) causes subsurface oxidation, which leads to failure in UHMWPE orthopedic components, yet the mechanisms causing subsurface oxidation remain unclear. The shelf aging of γ‐irradiated UHMWPE bars has been studied with electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) imaging and with microtoming and Fourier transform infrared microscopy. The bars initially contained only allyl radicals, and upon air exposure, a surface layer of peroxyl radicals formed through the reaction of allyl radicals with oxygen. Importantly, a band of low radical intensity just beneath the peroxyl layer became apparent. NMR imaging showed a zone of altered proton relaxation in this zone. With increasing time, surface peroxyl radicals persisted in comparison with the interior allyl radicals, although oxygen did not appear to penetrate any more deeply into the bar. The area of maximal oxidation and mechanical disruption, measured after 3 years, was at the interface between the zone of exterior peroxyl radicals and the zone of low radical intensity. We present a mechanism involving the intermediacy of sterically strained reactive dialkyl peroxides at this interface to explain subsurface oxidation. We also demonstrate that EPR and NMR imaging provides information that could potentially be used to identify subsurface oxidized UHMWPE components before failure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5929–5941, 2004  相似文献   

20.
The pyraninoxyl radical is readily formed from the MnO2‐promoted oxidation of pyranine. The free radical can be formed in high concentrations (mM ), and presents a characteristic EPR spectrum that indicates a high spin‐density delocalization. It is relatively stable under nitrogen (half‐life ca. 50 min) but readily decays in presence of O2. In spite of its high stability, the radical readily reacts with antioxidants (phenols and ascorbic acid) with a partial recovery of the parent pyranine. High concentrations of the pyraninoxyl radical (ca. 9 μM ) are present when pyranine is exposed to a free radical source (10 mM 2,2′‐azobis[2‐amidinopropane], 37°). The fact that these radicals readily react with antioxidants (ascorbic acid and caffeic acid) supports the proposal that protection by antioxidants of peroxyl radical‐promoted pyranine bleaching is mainly due to the occurrence of a repair mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号