首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In large‐scale shallow flow simulations, local high‐resolution predictions are often required in order to reduce the computational cost without losing the accuracy of the solution. This is normally achieved by solving the governing equations on grids refined only to those areas of interest. Grids with varying resolution can be generated by different approaches, e.g. nesting methods, patching algorithms and adaptive unstructured or quadtree gridding techniques. This work presents a new structured but non‐uniform Cartesian grid system as an alternative to the existing approaches to provide local high‐resolution mesh. On generating a structured but non‐uniform Cartesian grid, the whole computational domain is first discretized using a coarse background grid. Local refinement is then achieved by directly allocating a specific subdivision level to each background grid cell. The neighbour information is specified by simple mathematical relationships and no explicit storage is needed. Hence, the structured property of the uniform grid is maintained. After employing some simple interpolation formulae, the governing shallow water equations are solved using a second‐order finite volume Godunov‐type scheme in a similar way as that on a uniform grid. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
This paper extends an adaptive moving mesh method to multi‐dimensional shallow water equations (SWE) with source terms. The algorithm is composed of two independent parts: the SWEs evolution and the mesh redistribution. The first part is a high‐resolution kinetic flux‐vector splitting (KFVS) method combined with the surface gradient method for initial data reconstruction, and the second part is based on an iteration procedure. In each iteration, meshes are first redistributed by a variational principle and then the underlying numerical solutions are updated by a conservative‐interpolation formula on the resulting new mesh. Several test problems in one‐ and two‐dimensions with a general geometry are computed using the proposed moving mesh algorithm. The computations demonstrate that the algorithm is efficient for solving problems with bore waves and their interactions. The solutions with higher resolution can be obtained by using a KFVS scheme for the SWEs with a much smaller number of grid points than the uniform mesh approach, although we do not treat technically the bed slope source terms in order to balance the source terms and flux gradients. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
The successful implementation of a finite element model for computing shallow‐water flow requires the identification and spatial discretization of a surface water region. Since no robust criterion or node spacing routine exists, which incorporates physical characteristics and subsequent responses into the mesh generation process, modelers are left to rely on crude gridding criteria as well as their knowledge of particular domains and their intuition. Two separate methods to generate a finite element mesh are compared for the Gulf of Mexico. A wavelength‐based criterion and an alternative approach, which employs a localized truncation error analysis (LTEA), are presented. Both meshes have roughly the same number of nodes, although the distribution of these nodes is very different. Two‐dimensional depth‐averaged simulations of flow using a linearized form of the generalized wave continuity equation and momentum equations are performed with the LTEA‐based mesh and the wavelength‐to‐gridsize ratio mesh. All simulations are forced with a single tidal constituent, M2. Use of the LTEA‐based procedure is shown to produce a superior (i.e., less error) two‐dimensional grid because the physics of shallow‐water flow, as represented by discrete equations, are incorporated into the mesh generation process. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
A two‐phase flow model, which solves the flow in the air and water simultaneously, is presented for modelling breaking waves in deep and shallow water, including wave pre‐breaking, overturning and post‐breaking processes. The model is based on the Reynolds‐averaged Navier–Stokes equations with the k ?ε turbulence model. The governing equations are solved by the finite volume method in a Cartesian staggered grid and the partial cell treatment is implemented to deal with complex geometries. The SIMPLE algorithm is utilised for the pressure‐velocity coupling and the air‐water interface is modelled by the interface capturing method via a high resolution volume of fluid scheme. The numerical model is validated by simulating overturning waves on a sloping beach and over a reef, and deep‐water breaking waves in a periodic domain, in which good agreement between numerical results and available experimental measurements for the water surface profiles during wave overturning is obtained. The overturning jet, air entrainment and splash‐up during wave breaking have been captured by the two‐phase flow model, which demonstrates the capability of the model to simulate free surface flow and wave breaking problems.Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A computationally efficient, high‐resolution numerical model of shallow flow hydrodynamics is described, based on dynamically adaptive quadtree grids. The numerical model solves the two‐dimensional non‐linear shallow water equations by means of an explicit second‐order MUSCL‐Hancock Godunov‐type finite volume scheme. Interface fluxes are evaluated using an HLLC approximate Riemann solver. Cartesian cut cells are used to improve the fit to curved boundaries. A ghost‐cell immersed boundary method is used to update flow information in the smallest cut cells and overcome the time step restriction that would otherwise apply. The numerical model is validated through simulations of reflection of a surge wave at a wall, a low Froude number potential flow past a circular cylinder, and the shock‐like interaction between a bore and a circular cylinder. The computational efficiency is shown to be greatly improved compared with solutions on a uniform structured grid implemented with cut cells. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
The implementation of an adaptive mesh‐embedding (h‐refinement) scheme using unstructured grid in two‐dimensional direct simulation Monte Carlo (DSMC) method is reported. In this technique, local isotropic refinement is used to introduce new mesh where the local cell Knudsen number is less than some preset value. This simple scheme, however, has several severe consequences affecting the performance of the DSMC method. Thus, we have applied a technique to remove the hanging node, by introducing the an‐isotropic refinement in the interfacial cells between refined and non‐refined cells. Not only does this remedy increase a negligible amount of work, but it also removes all the difficulties presented in the originals scheme. We have tested the proposed scheme for argon gas in a high‐speed driven cavity flow. The results show an improved flow resolution as compared with that of un‐adaptive mesh. Finally, we have used triangular adaptive mesh to compute a near‐continuum gas flow, a hypersonic flow over a cylinder. The results show fairly good agreement with previous studies. In summary, the proposed simple mesh adaptation is very useful in computing rarefied gas flows, which involve both complicated geometry and highly non‐uniform density variations throughout the flow field. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
The representation of geometries as buildings, flood barriers or dikes in free surface flow models implies tedious and time‐consuming operations in order to define accurately the shape of these objects when using a body fitted numerical mesh. The immersed boundary method is an alternative way to define solid bodies inside the computational domain without the need of fitting the mesh boundaries to the shape of the object. In the direct forcing immersed boundary method, a solid body is represented by a grid of Lagrangian markers, which define its shape and which are independent from the fluid Eulerian mesh. This paper presents a new implementation of the immersed boundary method in an unstructured finite volume solver for the 2D shallow water equations. Moving least‐squares is used to transmit information between the grid of Lagrangian markers and the fluid Eulerian mesh. The performance of the proposed implementation is analysed in three test cases involving different flow conditions: the flow around a spur dike, a dam break flow with an isolated obstacle and the flow around an array of obstacles. A very good agreement between the classic body fitted approach and the immersed boundary method was found. The differences between the results obtained with both methods are less relevant than the errors because of the intrinsic shallow water assumptions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The weak Lagrange–Galerkin finite element method for the two‐dimensional shallow water equations on adaptive unstructured grids is presented. The equations are written in conservation form and the domains are discretized using triangular elements. Lagrangian methods integrate the governing equations along the characteristic curves, thus being well suited for resolving the non‐linearities introduced by the advection operator of the fluid dynamics equations. An additional fortuitous consequence of using Lagrangian methods is that the resulting spatial operator is self‐adjoint, thereby justifying the use of a Galerkin formulation; this formulation has been proven to be optimal for such differential operators. The weak Lagrange–Galerkin method automatically takes into account the dilation of the control volume, thereby resulting in a conservative scheme. The use of linear triangular elements permits the construction of accurate (by virtue of the second‐order spatial and temporal accuracies of the scheme) and efficient (by virtue of the less stringent Courant–Friedrich–Lewy (CFL) condition of Lagrangian methods) schemes on adaptive unstructured triangular grids. Lagrangian methods are natural candidates for use with adaptive unstructured grids because the resolution of the grid can be increased without having to decrease the time step in order to satisfy stability. An advancing front adaptive unstructured triangular mesh generator is presented. The highlight of this algorithm is that the weak Lagrange–Galerkin method is used to project the conservation variables from the old mesh onto the newly adapted mesh. In addition, two new schemes for computing the characteristic curves are presented: a composite mid‐point rule and a general family of Runge–Kutta schemes. Results for the two‐dimensional advection equation with and without time‐dependent velocity fields are illustrated to confirm the accuracy of the particle trajectories. Results for the two‐dimensional shallow water equations on a non‐linear soliton wave are presented to illustrate the power and flexibility of this strategy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
We consider the application of a four‐dimensional variational data assimilation method to a numerical model, which employs local mesh refinement to improve its solution. We focus on structured meshes where a high‐resolution grid is embedded in a coarser resolution one, which covers the entire domain. The formulation of the nested variational data assimilation algorithm was derived in a preliminary work (Int. J. Numer. Meth. Fluids 2008; under review). We are interested here in complementary theoretical aspects. We present first a model for the multi‐grid background error covariance matrix. Then, we propose a variant of our algorithms based on the addition of control variables in the inter‐grid transfers in order to allow for a reduction of the errors linked to the interactions between the grids. These formulations are illustrated and discussed in the test case experiment of a 2D shallow water model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A semi‐implicit finite volume model based upon staggered grid is presented for solving shallow water equation. The model employs a time‐splitting scheme that uses a predictor–corrector method for the advection term. The fluxes are calculated based on a Riemann solver in the prediction step and a downwind scheme in the correction step. A simple TVD scheme is employed for shock capturing purposes in which the Minmond limiter is used for flux functions. As a consequence of using staggered grid, an ADI method is adopted for solving the discretized equations for 2‐D problems. Several 1‐D and 2‐D flows have been modeled with satisfactory results when compared with analytical and experimental test cases. The model is also capable of simulating supercritical as well as subcritical flow. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The parallel implementation of an unstructured‐grid, three‐dimensional, semi‐implicit finite difference and finite volume model for the free surface Navier–Stokes equations (UnTRIM ) is presented and discussed. The new developments are aimed to make the code available for high‐performance computing in order to address larger, complex problems in environmental free surface flows. The parallelization is based on the mesh partitioning method and message passing and has been achieved without negatively affecting any of the advantageous properties of the serial code, such as its robustness, accuracy and efficiency. The key issue is a new, autonomous parallel streamline backtracking algorithm, which allows using semi‐Lagrangian methods in decomposed meshes without compromising the scalability of the code. The implementation has been carefully verified not only with simple, abstract test cases illustrating the application domain of the code but also with advanced, high‐resolution models presently applied for research and engineering projects. The scheme performance and accuracy aspects are researched and discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper a layer‐structured finite volume model for non‐hydrostatic 3D environmental free surface flow is presented and applied to several test cases, which involve the computation of gravity waves. The 3D unsteady momentum and mass conservation equations are solved in a collocated grid made of polyhedrons, which are built from a 2D horizontal unstructured mesh, by just adding several horizontal layers. The mesh built in such a way is unstructured in the horizontal plane, but structured in the vertical direction. This procedure simplifies the mesh generation and at the same time it produces a well‐oriented mesh for stratified flows, which are common in environmental problems. The model reduces to a 2D depth‐averaged shallow water model when one single layer is defined in the mesh. Pressure–velocity coupling is achieved by the Semi‐Implicit Method for Pressure‐Linked Equations algorithm, using Rhie–Chow interpolation to stabilize the pressure field. An attractive property of the model proposed is the ability to compute the propagation of short waves with a rather coarse vertical discretization. Several test cases are solved in order to show the capabilities and numerical stability of the model, including a rectangular free oscillating basin, a radially symmetric wave, short wave propagation over a 1D bar, solitary wave runup on a vertical wall, and short wave refraction over a 2D shoal. In all the cases the numerical results are compared either with analytical or with experimental data. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
There are two main difficulties in numerical simulation calculations using FD/FV method for the flows in real rivers. Firstly, the boundaries are very complex and secondly, the generated grid is usually very non‐uniform locally. Some numerical models in this field solve the first difficulty by the use of physical curvilinear orthogonal co‐ordinates. However, it is very difficult to generate an orthogonal grid for real rivers and the orthogonal restriction often forces the grid to be over concentrated where high resolution is not required. Recently, more and more models solve the first difficulty by the use of generalized curvilinear co‐ordinates (ξ,η). The governing equations are expressed in a covariant or contra‐variant form in terms of generalized curvilinearco‐ordinates (ξ,η). However, some studies in real rivers indicate that this kind of method has some undesirable mesh sensitivities. Sharp differences in adjacent mesh size may easily lead to a calculation stability problem oreven a false simulation result. Both approaches used presently have their own disadvantages in solving the two difficulties that exist in real rivers. In this paper, the authors present a method for two‐dimensional shallow water flow calculations to solve both of the main difficulties, by formulating the governing equations in a physical form in terms of physical curvilinear non‐orthogonal co‐ordinates (s,n). Derivation of the governing equations is explained, and two numerical examples are employed to demonstrate that the presented method is applicable to non‐orthogonal and significantly non‐uniform grids. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
The adjoint method can be used to identify uncertain parameters in large‐scale shallow water flow models. This requires the implementation of the adjoint model, which is a large programming effort. The work presented here is inverse modeling based on model reduction using proper orthogonal decomposition (POD). An ensemble of forward model simulations is used to determine the approximation of the covariance matrix of the model variability and the dominant eigenvectors of this matrix are used to define a model subspace. An approximate linear reduced model is obtained by projecting the original model onto this reduced subspace. Compared with the classical variational method, the adjoint of the tangent linear model is replaced by the adjoint of a linear reduced forward model. The minimization process is carried out in reduced subspace and hence reduces the computational costs. In this study, the POD‐based calibration approach has been implemented for the estimation of the depth values and the bottom friction coefficient in a large‐scale shallow sea model of the entire European continental shelf with approximately 106 operational grid points. A number of calibration experiments is performed. The effectiveness of the algorithm is evaluated in terms of the accuracy of the final results as well as the computational costs required to produce these results. The results demonstrate that the POD calibration method with little computational effort and without the implementation of the adjoint code can be used to solve large‐scale inverse shallow water flow problems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A third‐order mesh generation and adaptation method is presented for solving the steady compressible Euler equations. For interior points, a third‐order scheme is used on Cartesian and curvilinear meshes. Concerning the mesh adaptation, the method of Meakin is also extended to third order. The accuracy of the new overset mesh adaptation method is demonstrated by a grid convergence study for 2‐D inviscid model problems and results are compared with a second‐order method. Finally, the method is applied to the computation of an inviscid 3‐D flow around a hovering blade of the ONERA 7A helicopter rotor exhibiting an improvement in the wake capture. With a 7 million point mesh, the tip vortex can be followed for more than three rotor revolutions with the third‐order method. The CPU time needed for this calculation is only 3% higher than with a conventional second‐order method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
This paper gives the results of an application of the SWEs (shallow water equations) to a part of the Hamburg harbour area, which is a complex flow domain, using the BFG approach, outlined in Part I. The results of a grid doubling procedure generating the desired computational grid from a coarse initial mesh are also presented. A second class of problems which is addressed, demands time-dependent co-ordinate systems. The problems which are solved are the free surface problem for a moving wave which eventually breaks and for a wave which is reflected by the solid walls of a rectangular basin.  相似文献   

17.
Rhie–Chow interpolation is a commonly used method in CFD calculations on a co‐located mesh in order to suppress non‐physical pressure oscillations arising from chequerboard effects. A fully parallelized smoothed‐interface immersed boundary method on a co‐located grid is described in this paper. We discuss the necessity of modifications to the original Rhie–Chow interpolation in order to deal with a locally refined mesh. Numerical simulation with the modified scheme of Choi shows that numerical dissipation due to Rhie–Chow interpolation introduces significant errors at the immersed boundary. To address this issue, we develop an improved Rhie–Chow interpolation scheme that is shown to increase the accuracy in resolving the flow near the immersed boundary. We compare our improved scheme with the modified scheme of Choi by parallel simulations of benchmark flows: (i) flow past a stationary cylinder; (ii) flow past an oscillating cylinder; and (iii) flow past a stationary elliptical cylinder, where Reynolds numbers are tested in the range 10–200. Our improved scheme is significantly more accurate and compares favourably with a staggered grid algorithm. We also develop a scheme to compute the boundary force for the direct‐forcing immersed boundary method efficiently. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
A hybrid Eulerian‐Lagrangian particle‐in‐cell–type numerical method is developed for the solution of advection‐dominated flow problems. Particular attention is given over to the high‐order transfer of flow properties from the particles to the grid. For smooth flows, the method presented is of formal high‐order accuracy in space. The method is applied to solve the nonlinear shallow water equations resulting in a new, and novel, shock capturing shallow water solver. The approach is able to simulate complex shallow water flows, which can contain an arbitrary number of discontinuities. Both trivial and nontrivial bottom topography is considered, and it is shown that the new scheme is inherently well balanced, exactly satisfying the ‐property. The scheme is verified against several one‐dimensional benchmark shallow water problems. These include cases that involve transcritical flow regimes, shock waves, and nontrivial bathymetry. In all the test cases presented, very good results are obtained.  相似文献   

19.
A simple method is proposed for treating curved or irregular boundaries in Cartesian grid shallow flow models. It directly evaluates fictional values in ‘ghost’ cells adjacent to boundary cells and requires no interpolation or generation of cut cells. The boundary treatment is implemented in a dynamically adaptive quadtree grid‐based solver of the hyperbolic shallow water equations and validated against several test cases with analytical or alternative numerical solutions. The method is easy to code, accurate, and demonstrably effective in dealing with irregular computational domains in shallow flow simulations. Results are presented for still water in a basin of complicated geometry, steady hydraulic jump in an open channel with a converging sidewall, wind‐induced circulation in a circular shallow lake, and shock wave diffraction in a channel containing a contraction and expansion. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, a new immersed‐boundary method for simulating flows over complex immersed, moving boundaries is presented. The flow is computed on a fixed Cartesian mesh and the solid boundaries are allowed to move freely through the mesh. The present method is based on a finite‐difference approach on a staggered mesh together with a fractional‐step method. It must be noted that the immersed boundary is generally not coincident with the position of the solution variables on the grid, therefore, an appropriate strategy is needed to construct a relationship between the curved boundary and the grid points nearby. Furthermore, a momentum forcing is added on the body boundaries and also inside the body to satisfy the no‐slip boundary condition. The immersed boundary is represented by a series of interfacial markers, and the markers are also used as Lagrangian forcing points. A linear interpolation is then used to scale the Lagrangian forcing from the interfacial markers to the corresponding grid points nearby. This treatment of the immersed‐boundary is used to simulate several problems, which have been validated with previous experimental results in the open literature, verifying the accuracy of the present method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号