首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
All relevant 13C NMR signals of two series of seven homogeneous ethylene–propylene copolymers were used to fit the second‐order Markov reactivity ratios of the catalysts and the theoretical feeds. The copolymers cover a very broad range of comonomer incorporations, from about 10 to 93%, and show only primary (1,2) insertions. For both series, solutions are found with reliabilities >>99.5%. The reactivity ratios, r112 = 2.54, r121 = 0.12, r212 = 2.05, and r221 = 0.29 for the used Zirconocone and r112 = 1.69, r121 = 0.32, r212 = 1.56, and r221 = 0.51 for the hafnocene, provide direct information about the metallocenes, the kinetics, and the chain microstructure. With these results, the direct peak method demonstrates that the use of all relevant 13C NMR peaks enables accurate second‐order Markov modeling, revealing subtle differences between copolymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 747–755, 2006  相似文献   

2.
All relevant 13C NMR signals of a series of 19 homogeneous ethylene–propylene copolymers were used to fit the first‐order Markov reactivity ratios of the catalyst and the theoretical feeds. The copolymers cover a broad range of comonomer incorporations, from 17.0 to 56.5%, and show both primary (1,2) and secondary (2,1) insertions. As expected, two solutions are found, the normal solution showing a better fit and reliability > 99.5%. The reactivity ratios, r12 = 20.0, r13 = 162.0, r21 = 0.015, r23 = 1.3, and r31 = 0.060, provide direct information about the vanadium‐based catalyst, the kinetics, and the chain microstructure. The values also explain the comonomer content‐dependent inversion and even predict a 100% secondary insertion PP homopolymer. With these results, the direct peak method shows that the use of all relevant 13C NMR peaks improves the accuracy of first‐order Markov modeling. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 738–746, 2006  相似文献   

3.
Ethylene (E), propylene (P), and 1‐pentene (A) terpolymers differing in monomer composition ratio were produced, using the metallocenes rac‐ethylene bis(indenyl) zirconium dichloride/methylaluminoxane (rac‐Et(Ind)2ZrCl2/MAO), isopropyl bis(cyclopentadienyl)fluorenyl zirconium dichloride/methylaluminoxane (Me2C(Cp)(Flu)ZrCl2/MAO, and bis(cyclopentadienyl)zirconium dichloride, supported on silica impregnated with MAO (Cp2ZrCl2/MAO/SiO2/MAO) as catalytic systems. The catalytic activities at 25 °C and normal pressure were compared. The best result was obtained with the first catalyst. A detailed study of 13C NMR chemical shifts, triad sequences distributions, monomer‐average sequence lengths, and reactivity ratios for the terpolymers is presented. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 947–957, 2008  相似文献   

4.
The permeation behavior of different ethylene‐1‐hexene, ethylene‐1‐octene, and ethylene‐1‐dodecene copolymers synthesized with metallocene catalysts has been analyzed. These copolymers cover a wide range of comonomer contents, so their crystallinities display rather considerable variations. The results for the permeability to oxygen of the different ethylene copolymers show that the main factor influencing the permeability is the noncrystalline fraction, although some influence of the kind of comonomer may also be present, which may be explained by the fact that when the alkyl branch of the α‐olefin is longer, there is an increase in the free volume in the amorphous and interfacial regions, causing slightly higher values of the permeability coefficient. From the results with different gases, it follows that, in general, an increase in the size of the penetrant (as expressed by its kinetic diameter or critical molar volume) leads to an increase in the solubility and a decrease in the diffusion coefficient. A wide range of permeability values is covered by these ethylene copolymers, depending basically on the crystallinity of the sample, but the permselectivity of CO2 with respect to oxygen (and probably between other pairs of gases) does not differ very much among the different copolymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2174–2184, 2003  相似文献   

5.
Three new three‐dimensional geometry bulky α‐diimine ligands ( L ) containing electron‐donating and electron‐withdrawing groups, 9,10‐dihydro‐9,10‐ethanoanthracene‐11,12‐di(Ar)imine (Ar = p‐PhCH3, L1 ; Ar=p‐PhCl, L2 ; Ar=p‐PhCF3, L3 .), and their corresponding single Ni(II) catalysts, NiL2Br2 ( Ni(L1)2Br2 , Ni(L2)2Br2 , and Ni(L3)2Br2 , were synthesized and the molecular structure were determined by X‐ray crystallography. All NiL2Br2 catalysts were tested for norbornene polymerization and copolymerization of norbornene with 1‐alkene after activation with B(C6F5)3. The results that the polymerization catalytic activities for norbornene up to 105 gpolymer/molNi·h even at 140 °C, shown that NiL2Br2 catalysts have high thermal stability. Meanwhile, catalysts with electron‐withdrawing groups could achieve higher reactivity. The obtained poly(NB‐co‐1‐alkene)s were confirmed to be vinyl‐addition copolymers and noncrystalline. All copolymers exhibited high 1‐alkenes insertion ratio, good thermal stability (Td > 375 °C), high molecular weight (up to 105 g/mol), good solubility in common organic solvents and could be processed into films with good transparency in the visible region. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3495–3505  相似文献   

6.
7.
Norbornene–ethylene copolymers were prepared using the metallocene catalyst ethylene bis (indenyl) zirconium dichloride with MAO, and their microstructure was characterized with 1H-NMR and 13C-NMR methods. From a Cosy 1H-NMR spectrum it was found that all norbornene units are enchained in the exo-configuration. The sequence distribution of norbornene units was investigated using 13C-1H correlations, hmqc for one-bond correlations, and hmbc for two- or three-bond correlations. It was shown that norbornene diads were formed at a high norbornene content (45 mol %). When further increasing the norbornene incorporation (66 mol %) a number of new signals were obtained. A Cosy 1H-NMR spectrum revealed a new crosspeak which, according to the corresponding 13C-NMR shifts (hmqc), correlated well with a terminal unit of a trimer of norbornene. This means that at very high norbornene contents, norbornene triads can be formed. Because the formation of isotactic norbornene triads is very difficult to understand from a sterical point of view, an epimerization process causing stereoirregularities in the norbornene triad is proposed. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1633–1638, 1998  相似文献   

8.
A systematic study of the influence of the α‐olefin size, the catalyst stereospecificity and the reaction temperature was done on the catalytic activity and tacticity of poly‐α‐olefins from 1‐hexene to 1‐octadecene. The metallocenes used were rac‐Et[Ind2]ZrCl2 ( 1 ) and Me2C[Cp(9‐Flu)]ZrCl2 ( 2 ) to obtain isotactic and syndiotactic polyolefins. Some catalysts giving atactic polymers were also used in order to study all the possible 13C NMR pentades. Catalytic activities increased and isotacticity and syndiotacticity decreased with temperature, but no real trend was found with the α‐olefin size. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4744–4753, 2005  相似文献   

9.
The influence of the comonomer in the synthesis of poly(propylene‐co ?1‐pentene) copolymers, with rac‐(dimethylsilylbis(1‐indenyl))ZrCl2/Methylaluminoxane at low temperature, has been studied. Changes in the catalyst activity and molecular weight have been analyzed as a function of copolymer composition, and associated with both content and nature of chain defects. The thorough characterization of chain‐end double bonds by means of the 1H NMR technique highlights the particular chain termination pathway, which underlies the so‐called comonomer effect. A specific termination mechanism is proposed based on the preferential regio‐irregular interaction of the active site with 1‐pentene molecules, instead of the one related to the β‐H atom of the last regular inserted unit, either propene or 1‐pentene. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 843–854  相似文献   

10.
Propene (P)/4‐methyl‐1‐pentene (Y) copolymers in a wide range of composition were prepared with isospecific single center catalysts, rac‐Et(IndH4)2ZrCl2 ( EBTHI ), rac‐Me2Si(2‐Me‐BenzInd)2ZrCl2 ( MBI ), and rac‐CH2(3‐tBuInd)2ZrCl2 ( TBI ). 13C NMR analysis of copolymers and statistical elaboration of microstructural data at triad level were performed. Unprecedented and surprising results are here reported. Random P/Y copolymers were prepared with the most isospecific catalyst, TBI , that is known to prepare ethene/propene and ethene/4‐methyl‐1‐pentene copolymers with long homosequences of both comonomers, whereas longer homosequences of both comonomers were observed in copolymers from the less enantioselective metallocenes EBTHI and MBI . These findings, which are against what is acknowledged in the field, can pave the way for the preparation on a large scale of random propene‐based copolymers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2575–2585  相似文献   

11.
The influence of ligand structure on copolymerization properties of metallocene catalysts was elucidated with three C1‐symmetric methylalumoxane (MAO) activated zirconocene dichlorides, ethylene(1‐(7, 9)‐diphenylcyclopenta‐[a]‐acenaphthadienyl‐2‐phenyl‐2‐cyclopentadienyl)ZrCl2 ( 1 ), ethylene(1‐(7, 9)‐diphenylcyclopenta‐[a]‐acenaphthadienyl‐2‐phenyl‐2‐fluorenyl)ZrCl2 ( 2 ), and ethylene(1‐(9)‐fluorenyl‐(R)1‐phenyl‐2‐(1‐indenyl)ZrCl2 ( 3 ). Polyethenes produced with 1 /MAO had considerable, ca. 10% amount of trans‐vinylene end groups, resulting from the chain end isomerization prior to the chain termination. When ethene was copolymerized with 1‐hexene or 1‐hexadecene using 1 /MAO, molar mass of the copolymers varied from high to moderate (531–116 kg/mol) depending on the comonomer feed. At 50% comonomer feed, ethene/1‐olefin copolymers with high hexene or hexadecene content (around 10%) were achievable. In the series of catalysts, polyethenes with highest molar mass, up to 985 kg/mol, were obtained with sterically most crowded 2 /MAO, but the catalyst was only moderately active to copolymerize higher olefins. Catalyst 3 /MAO produced polyethenes with extremely small amounts of trans‐vinylene end groups and relatively low molar mass 1‐hexene copolymers (from 157 to 38 kg/mol) with similar comonomer content as 1 . These results indicate that the catalyst structure, which favors chain end isomerization, is also capable to produce high molar mass 1‐olefin copolymers with high comonomer content. In addition, an exceptionally strong synergetic effect of the comonomer on the polymerization activity was observed with catalyst 3 /MAO. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 373–382, 2008  相似文献   

12.
Summary: Copolymerizations of propene and buta‐1,3‐diene performed in the presence of rac‐[CH2(3‐tert‐butyl‐1‐indenyl)2]ZrCl2 and methylaluminoxane (MAO) have been investigated. Buta‐1,3‐diene gives prevailingly primary coordination to the metal, producing overall 1,2 units. Cyclopropane and cyclopentane rings, although in low amounts, are also obtained. The presence of butadiene would be responsible for some regioirregular 2,1‐inserted propene units, which at high temperatures give rearrangement to 3,1 units.

  相似文献   


13.
Half titanocenes (CpCH2CH2O)TiCl2 (1), (CpCH2CH2OCH3)TiCl3 (2), and CpTiCl3 (3), activated by methylaluminoxane (MAO) were tested in copolymerization of ethylene with internal olefins such as cyclopentene. All the catalysts were able to give incorporation of cyclopentene in polyethylene matrix. 13C NMR analysis of obtained copolymers showed that the catalytic systems have low regiospecificity. In fact, in ethylene–cyclopentene copolymers, cyclic olefin inserts with both 1,2 and 1,3‐enchainment. X‐ray powder diffraction analysis of these copolymers confirmed that 1,2 inserted cyclopentene units are excluded from crystalline phase, whereas 1,3‐cyclopentene units are included, giving rise to expansion of unit cell of crystalline polyethylene. Titanium‐based catalysts were investigated also in the copolymerization of ethylene with E and Z‐2‐butene. Only complex (1) was able to give copolymers and 13C NMR analysis of products showed 2‐3, 1‐3, and 1‐2 insertion of 2‐butene. Differential scanning calorimetry analysis displayed that ethylene–cyclopentene, as well as ethylene‐2‐butene, copolymers are crystalline and their melting point decreases by increasing the comonomer content. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4725–4733, 2008  相似文献   

14.
Copolymers of propylene and 1‐octadecene synthesized by a metallocene catalyst were characterized by PALS, WAXD, DSC, and density measurements. The change in the sizes and the number density of free‐volume holes as a function of the 1‐octadecene content were compared to the master laws published for copolymers of propylene with α‐olefins of shorter lengths. It was found that the samples were separated into two groups. The first set of samples obeyed the master laws while the second group deviated. This behavior was explained by the difference in the copolymer structure. The WAXD analysis confirmed the separation as well. The deviation was explained as due to the mesomorphic crystalline structure of the second group of samples, in contrast to the monoclinic one for the first group, which was a result of the relatively fast cooling from the molten state and from the high comonomer molar content. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1994–2002, 2010  相似文献   

15.
16.
We report the complete 13C NMR characterization of a series of ethylene–propylene–1‐hexene terpolymers obtained with the metallocenic system rac‐ethylene bis‐indenyl zirconium dichloride, with different comonomer ratios. A detailed study of 13C NMR chemical shifts, triad sequence distributions, monomer‐average sequence lengths, and reactivity ratios for these terpolymers is presented. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2474–2482, 2004  相似文献   

17.
Four comonomers bearing a highly efficient phenolic antioxidant unit and different methylene spacers between the aromatic ring and the double bond have been prepared and tested in copolymerization with ethylene using metallocene‐based catalysts. The possibility of obtaining a “masterbatch” suitable for melt blending with commercial polyolefins has been evaluated by modifying: (i) the structure of the functionalized comonomer, (ii) the kind of catalyst, and (iii) the polymerization conditions. Characterization of monomers and copolymers was accomplished by using 1H and 13C NMR, size exclusion chromatography (SEC), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). Using the comonomer with the longest methylene spacer between the aromatic ring and the double bond, and rac‐(EBTHI)ZrCl2 as catalyst, adjustable amounts of the antioxidant moiety can be incorporated into the polyethylene chains. TGA analysis carried out on some of the copolymers containing the antioxidant group showed no oxygen uptake before decomposition. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6393–6406, 2008  相似文献   

18.
19.
N‐vinyl‐2‐pyrrolidone/methyl acrylate (V/M) copolymers were prepared by free‐radical bulk polymerization using benzoyl peroxide as an initiator. The copolymer composition of these copolymers was calculated from 1H NMR spectra. The radical reactivity ratios for N‐vinyl‐2‐pyrrolidone (V) and methyl acrylate (M) were rV = 0.09, rM = 0.44. These reactivity ratios for the copolymerization of V and M were determined using the Kelen–Tudos and nonlinear least‐squares error‐in‐variable methods. The 13C{1H} and 1H NMR spectra of these copolymers overlapped and were complex. The complete spectral assignment of the 13C and 1H NMR spectra were done with distortionless enhancement by polarization transfer and two dimensional 13C‐1H heteronuclear single quantum correlation spectroscopic experiments. The two‐dimensional 1H‐1H homonuclear total correlation spectroscopic NMR spectrum showed the various bond interactions, thus inferring the possible structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2225–2236, 2002  相似文献   

20.
N‐vinyl‐2‐pyrrolidone/methyl acrylate (V/M) copolymers were prepared by free‐radical bulk polymerization using benzoyl peroxide as an initiator. The copolymer composition of these copolymers was calculated from 1H NMR spectra. The radical reactivity ratios for N‐vinyl‐2‐pyrrolidone (V) and methyl acrylate (M) were rV = 0.09, rM = 0.44. These reactivity ratios for the copolymerization of V and M were determined using the Kelen–Tudos and nonlinear least‐squares error‐in‐variable methods. The 13C{1H} and 1H NMR spectra of these copolymers overlapped and were complex. The complete spectral assignment of the 13C and 1H NMR spectra were done with distortionless enhancement by polarization transfer and two dimensional 13C‐1H heteronuclear single quantum correlation spectroscopic experiments. The two‐dimensional 1H‐1H homonuclear total correlation spectroscopic NMR spectrum showed the various bond interactions, thus inferring the possible structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2225–2236, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号