首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effect of the state of hydrated surface of the bulk oxide photocatalysts, TiO2, CeO2, and ZnO on the rate of UV-induced oxidation of CO with atmospheric oxygen was studied. The activity of dehydroxylated catalyst samples evacuated at temperatures of >350 °C toward CO photooxidation decreases in the series CeO2 > ZnO ≈ TiO2, while that of partially hydrated samples after pretreatment at 20 °C changes in the order TiO2 > ZnO ≥ CeO2 ≈ 0. According to the results, the difference in the photocatalytic activity toward CO oxidation on the dehydrated ZnO, TiO2, and CeO2 catalysts is attributable to different concentrations of oxygen vacancies, which are formed more readily after high-temperature treatment on ZnO and CeO2 and thus promote higher rate of CO photooxidation. Using a new technique for recording transmittance IR spectra, it was found that photoirradiation in the presence of adsorbed water and O2 gives peroxides and hydroperoxides, with their concentrations decreasing in the series TiO2 >> ZnO >> CeO2. Most likely, these species are active intermediates of CO photooxidation with oxygen in the presence of adsorbed water. The hydrophobization effect was detected upon TiO2 modification with zinc, resulting in removal of surface acid sites capable of adsorbing water. The TiO2 modification with zinc increases the activity of CO photooxidation with respect to the oxidation catalyzed by samples pretreated at low temperatures (20—60 °C).  相似文献   

2.
Herein, we report on the synthesis of ultrasmall Pd nanoclusters (∼2 nm) protected by L-cysteine [HOCOCH(NH2)CH2SH] ligands (Pdn(L-Cys)m) and supported on the surfaces of CeO2, TiO2, Fe3O4, and ZnO nanoparticles for CO catalytic oxidation. The Pdn(L-Cys)m nanoclusters supported on the reducible metal oxides CeO2, TiO2 and Fe3O4 exhibit a remarkable catalytic activity towards CO oxidation, significantly higher than the reported Pd nanoparticle catalysts. The high catalytic activity of the ligand-protected clusters Pdn(L-Cys)m is observed on the three reducible oxides where 100 % CO conversion occurs at 93–110 °C. The high activity is attributed to the ligand-protected Pd nanoclusters where the L-cysteine ligands aid in achieving monodispersity of the Pd clusters by limiting the cluster size to the active sub-2-nm region and decreasing the tendency of the clusters for agglomeration. In the case of the ceria support, a complete removal of the L-cysteine ligands results in connected agglomerated Pd clusters which are less reactive than the ligand-protected clusters. However, for the TiO2 and Fe3O4 supports, complete removal of the ligands from the Pdn(L-Cys)m clusters leads to a slight decrease in activity where the T100% CO conversion occurs at 99 °C and 107 °C, respectively. The high porosity of the TiO2 and Fe3O4 supports appears to aid in efficient encapsulation of the bare Pdn nanoclusters within the mesoporous pores of the support.  相似文献   

3.

High-chromium vanadium–titanium magnetite (HCVTM) is a good valuable resource with high iron content in the form of complex iron ore which contains various valuable metal elements such as iron, vanadium, titanium, chromium. Direct reduction of HCVTM is studied based on thermodynamic analysis. Combined TG experimental verification and equilibrium calculation model was used to analyze the reaction sequence and equilibrium amount in this paper. The contents in HCVTM reduction system are simplified as 18 kinds of chemical compositions. Reductions of Fe3O4 and FeO·TiO2 are the main reduction reactions and are mainly reduced by C. The reduction reaction sequence of FeO·TiO2 is FeO·TiO2, TiO2, TiC, and Ti; the reduction reaction sequence of Fe3O4 is Fe3O4, FeO, and Fe. The minimum reduction temperature of HCVTM is 860 °C. The reduction of Cr is difficult to implement, and the minimum reduction temperature of V is above 700 °C. The gas phase in this system is mainly CO when the temperature is above 1000 °C. CO partial pressure curve of gasification reaction is in the shape of ‘S’ with increase of temperature. When the temperature is 1350 °C, C/O is 1.0 and reduction time is 30 min, HCVTM can be reduced thoroughly and the reduction degree can reach to 0.98. When C/O is lower than 1.0, FeTi2O5 is the reduction intermediate products from FeO·TiO2. When C/O is 1.0, diffraction peaks of Fe3O4 and FeO·TiO2 disappear, and they are reduced to Fe and TiO2.

  相似文献   

4.
The thermal treatment of TiO2 pellets prepared by the sol–gel method decreased the photocatalytic activity. The activity divided by the specific surface area of the pellets for the complete mineralization of ethylene or chloroform was maximized at the firing temperature of 400°C. For the photocatalytic degradation of trichloroethylene (TCE), most of them were converted to chlorinated by-products, such as dichloroacetic acid, chloroform, and phosgene, and the stoichiometric ratio of [CO2]formed/[TCE]degraded showed a maximal value at 400°C. The electron spin resonance (ESR) spin-trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) in the flow injection system indicated that firing at 400°C gave the highest signal intensity of DMPO–OH adducts. These findings indicated that the OH radical was produced most effectively on the TiO2 fired at 400°C, which would be related to the content of anatase and rutile. Concerning the formation of chlorinated by-products from TCE, more dichloroacetic acid (DCAA) were detected and less CHCl3 and COCl2 were formed at lower firing temperatures, suggesting that the branching ratio of chloroethoxy radicals to the formation of DCAA or CHCl3 and COCl2 by C–C bond scission depended on the firing temperature.  相似文献   

5.
Silca-supported Co3O4 (6 wt% as Co) catalysts were prepared by pore volume impregnation of ethanol or aqueous cobalt nitrate solutions, and calcined in vacuo to 300 °C. The catalytic performances of these catalysts for oxidation and hydrogenation of CO were examined. All Co3O4/SiO2 catalysts were found to be very active in catalyzing oxidation of CO to CO2 as compared to a commercial 1 wt% Pt/Al2O3. The ethanol-prepared catalysts exhibited higher activity than those of the aqua-prepared catalysts. Pre-calcination of the ethanol-prepared catalysts in oxygen at 600 °C resulted in a dramatic decrease in the activity. Temperature programmed oxidation indicated the presence of carbon deposits on the surface of used catalysts. Infrared spectra showed the continuous generation of CO2 when these catalysts were exposed to CO. These indicate the primary role of CO disproportionation in catalytic oxidation of CO on Co3O4 at low temperature and explain the sharp decrease in activity in the initial period. After reduction at 400 °C, the ethanol-prepared catalysts were also found to be more active in catalyzing hydrogenation of CO, and produced less methane and olefin (C2-C4) fraction. Higher turnover frequencies were observed after high temperature reduction (600 °C) as well, at which ethoxyl groups were removed from silica surface. In both reactions, the enhanced activity for the ethanol-prepared catalysts can not be fully accounted for by the increase in the dispersion of Co3O4 or CO metal. This suggests that the surface structures of Co3O4 or CO were further modified by the carbonaceous species derived from ethanol.  相似文献   

6.
The correlation between phase structures and surface acidity of Al2O3 supports calcined at different temperatures and the catalytic performance of Ni/Al2O3 catalysts in the production of synthetic natural gas (SNG) via CO methanation was systematically investigated. A series of 10 wt% NiO/Al2O3 catalysts were prepared by the conventional impregnation method, and the phase structures and surface acidity of Al2O3 supports were adjusted by calcining the commercial γ-Al2O3 at different temperatures (600–1200 °C). CO methanation reaction was carried out in the temperature range of 300–600 °C at different weight hourly space velocities (WHSV = 30000 and 120000 mL·g?1·h?1) and pressures (0.1 and 3.0 MPa). It was found that high calcination temperature not only led to the growth in Ni particle size, but also weakened the interaction between Ni nanoparticles and Al2O3 supports due to the rapid decrease of the specific surface area and acidity of Al2O3 supports. Interestingly, Ni catalysts supported on Al2O3 calcined at 1200 °C (Ni/Al2O3-1200) exhibited the best catalytic activity for CO methanation under different reaction conditions. Lifetime reaction tests also indicated that Ni/Al2O3-1200 was the most active and stable catalyst compared with the other three catalysts, whose supports were calcined at lower temperatures (600, 800 and 1000 °C). These findings would therefore be helpful to develop Ni/Al2O3 methanation catalyst for SNG production.  相似文献   

7.
The kinetics of CO methanation in excess H2 on CaO- and CeO2-doped nickel catalysts supported on Al2O3 and TiO2 was studied at atmospheric pressure in a temperature range of 180–240°C. It was found that the same rational fractional rate equation corresponding to the reaction taking place at high surface coverages, is valid for all of the catalysts. The activity of nickel catalysts in the methanation reaction and their adsorption capacity with respect to reaction mixture components depend on the nature of the support and dopants.  相似文献   

8.
Natural gas resources, stimulate the method of catalytic methane decomposition. Hydrogen is a superb energy carrier and integral component of the present energy systems, while carbon nanotubes exhibit remarkable chemical and physical properties. The reaction was run at 700 °C in a fixed bed reactor. Catalyst calcination and reduction were done at 500 °C. MgO, TiO2 and Al2O3 supported catalysts were prepared using a co‐precipitation method. Catalysts of different iron loadings were characterized with BET, TGA, XRD, H2‐TPR and TEM. The catalyst characterization revealed the formation of multi‐walled nanotubes. Alternatively, time on stream tests of supported catalyst at 700 °C revealed the relative profiles of methane conversions increased as the %Fe loading was increased. Higher %Fe loadings decreased surface area of the catalyst. Iron catalyst supported with Al2O3 exhibited somewhat higher catalytic activity compared with MgO and TiO2 supported catalysts when above 35% Fe loading was used. CH4 conversion of 69% was obtained utilizing 60% Fe/Al2O3 catalyst. Alternatively, Fe/MgO catalysts gave the highest initial conversions when iron loading below 30% was employed. Indeed, catalysts with 15% Fe/MgO gave 63% conversion and good stability for 1 h time on stream. Inappropriateness of Fe/TiO2 catalysts in the catalytic methane decomposition was observed.  相似文献   

9.
The liquidus in the system Bi2O3TiO2 has been determined in the range 2 to 22 mole % TiO2 by a thermobalance technique and by DTA. It has been confirmed that Bi12TiO20 melts incongruently at 875°C and that the eutectic composition between Bi12TiO20 and Bi2O3 melts at 795°C.  相似文献   

10.
Palladium catalysts are supported on TiO2, ZrO2, Al2O3, Zr0.5Al0.5O1.75 and TiO2-Zr0.5Al0.5O1.75 prepared by co-precipitation method, respectively. Catalytic activities for methane and CO oxidation are evaluated in a gas mixture that simulated the exhaust from lean-burn natural gas vehicles (NGVs). Pd/TiO2-Zr0.5Al0.5O1.75 performs the best catalytic activity among the tested five catalysts. For CH4, the light-off temperature (T50) is 254 °C, and the complete conversion temperature (T90) is 280 °C; for CO, T50 is 84 °C, and T90 was 96 °C. Various techniques, including N2 adsorption-desorption, X-ray diffraction (XRD), H2-temperature-programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) are employed to characterize the effect of supports on the physicochemical properties of prepared catalysts. N2 adsorption-desorption and SEM show that TiO2-Zr0.5Al0.5O1.75 expresses uniform nano-particles and large meso-pore diameters of 26 nm. H2-TPR and XRD indicate that PdO is well dispersed on the supports and strongly interacted with each other. The results of XPS show that the electron density around PdO and the proportion of active oxygen on TiO2-Zr0.5Al0.5O1.75 are maxima among the five supports.  相似文献   

11.
To enhance film conformality together with electrical property suitable for dynamic random access memory (DRAM) capacitor dielectric, the effects of oxidant and post heat treatment were investigated on aluminum and titanium oxide (Al2O3–TiO2) bilayer (ATO) thin film formed by atomic layer deposition method. For the conformal deposition of Al2O3 thin film, the O3 oxidant required a higher deposition temperature, more than 450 °C, while H2O or combined oxygen sources (H2O+O3) needed a wide range of deposition temperatures ranging from 250 to 450 °C. Conformal deposition of the TiO2 thin film was achieved at around 325 °C regardless of the oxidants. The charge storage capacitance, measured from the ATO bilayer (4 nm Al2O3 and 2 nm TiO2) deposited at 450 °C for Al2O3 and 325 °C for TiO2 with O3 oxidant on the phosphine-doped poly silicon trench, showed about 15% higher value than that of 5 nm Al2O3 single layer thin film without any increase of leakage current. To maintain the improved electrical property of the ATO bilayer for DRAM application, such as enhanced charge capacitance without increase of leakage current, upper electrode materials and post heat treatments after electrode formation must be selected carefully. Dedicated to Professor Su-Il Pyun on the occasion of his 65th birthday.  相似文献   

12.
Fe/TiO2 catalyst was prepared by incipient wetness impregnation of TiO2 with aqueous solution of ferric nitrate. The reduction behavior of the catalyst was studied by temperature programmed reduction profiles, Mössbauer spectroscopy, x-ray diffraction and x-ray photoelectron spectroscopy. The results show that the reduction of Fe/TiO2 was accompanied by a phase transition of anatase to rutile titania. α-Fe2O3 was reduced to Fe3O4 in the initial reduction stage. Due to the strong support effect of TIO2, FeTiO3 was gradually formed as the reduction temperature reached 450°C. Complete reduction to the metallic Fe° particles occurred at temperatures higher than 670°C. The anatase-rutile transition was initiated by the reduced Ti3+ ions and led to the formation of TiOx. At higher reduction temperature, TiOx migrated to the surface of metallic Fe° particles forming FeTiOx in the so-called strong metal-support interaction (SMSI) state.  相似文献   

13.
Poly(vinyl pyrrolidone) (PVP)/[Ti(SO4)2 + Al(NO3)3] composite nanobelts were prepared via electrospinning technology, and TiO2/Al2O3 nanobelts were fabricated by calcination of the prepared composite nanobelts. The samples were characterized by thermogravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). XRD results show that the composite nanobelts were amorphous in structure, and pure phase TiO2/Al2O3 nanobelts were obtained by calcination of the relevant composite nanobelts at 950°C for 8 h. SEM analysis indicates that the surface of as-prepared composite nanobelts was smooth, the widths of the composite fibers were in narrow range, and the mean width was ca. 8.9 ± 2.1 μm, thickness was about 255 nm, and there is no cross-linking among nanobelts. The width of TiO2/Al2O3 nanobelts was ca. 1.3 ± 0.1 μm and the thickness was about 105 nm. TG-DTA analysis reveals that the N,N-dimethylformamide (DMF), organic compounds and inorganic salts in the composite nanobelts were decomposed and volatilized totally, and the weight of the sample kept constant when sintering temperature was above 900°C, and the total weight loss percentage was 81%. FTIR analysis manifests that crystalline TiO2/Al2O3 nanobelts were formed at 950°C. The possible formation mechanism of the TiO2/Al2O3 nanobelts was preliminarily discussed.  相似文献   

14.
The effect of the microstructure of titanium dioxide on the structure, thermal stability, and catalytic properties of supported CuO/TiO2 and CuO/(CeO2-TiO2) catalysts in CO oxidation was studied. The formation of a nanocrystalline structure was found in the CuO/TiO2 catalysts calcined at 500°C. This nanocrystalline structure consisted of aggregated fine anatase particles about 10 nm in size and interblock boundaries between them, in which Cu2+ ions were stabilized. Heat treatment of this catalyst at 700°C led to a change in its microstructure with the formation of fine CuO particles 2.5–3 nm in size, which were strongly bound to the surface of TiO2 (anatase) with a regular well-ordered crystal structure. In the CuO/(CeO2-TiO2) catalysts, the nanocrystalline structure of anatase was thermally more stable than in the CuO/TiO2 catalyst, and it persisted up to 700°C. The study of the catalytic properties of the resulting catalysts showed that the CuO/(CeO2-TiO2) catalysts with the nanocrystalline structure of anatase were characterized by the high-est activity in CO oxidation to CO2.  相似文献   

15.
Density functional theory (DFT) calculations at ONIOM DFT B3LYP/ 6‐31G**‐MD/UFF level are employed to study molecular and dissociative water and ammonia adsorption on anatase TiO2 (001) surface represented by partially relaxed Ti20O35 ONIOM cluster. DFT calculations indicate that water molecule is dissociated on anatase TiO2 (001) surface by a nonactivated process with an exothermic relative energy difference of 58.12 kcal/mol. Dissociation of ammonia molecule on the same surface is energetically more favorable than molecular adsorption of ammonia (?37.17 kcal/mol vs. ?23.28 kcal/mol). The vibration frequency values also are computed for the optimized geometries of adsorbed water and ammonia molecules on anatase TiO2 (001) surface. The computed adsorption energy and vibration frequency values are comparable with the values reported in the literature. Finally, several thermodynamical properties (ΔH°, ΔS°, and ΔG°) are calculated for temperatures corresponding to the experimental studies. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

16.
New potassium-conducting solid electrolytes in the mixed gallate-ferrite systems (1 − x)Ga2O3 · xFe2O3 · 0.25TiO2 · K2O and 1.5[(1 − x)Ga2O3 · xFe2O3] · TiO2 · 2K2O are synthesized and studied. The electrolytes exhibit high ionic conductivity in the test temperature range of 300 to 750°C (above 10−2 S/cm at 300°C and above 10−1 S/cm at 700°C). An increase in the conductivity with increasing concentration of iron in the specimens is a general tendency. Possible reasons for the effect of Ga/Fe ratio in the structure of solid electrolytes on their transport properties are discussed.  相似文献   

17.
The polycrystalline solids TiO2Fe2O3, with iron contents in the range 0–10 at.%, prepared by coprecipitation and by impregnation, and treated in air at temperatures in the range 500–1000°C, have been studied by X-ray, ESR, and Mössbauer methods. The TiO2 in the samples treated at 800 and 1000°C always forms the rutile phase and the Fe3+ has a rather low solubility in it (~0.1 at.%). The Fe3+ in excess forms the antiferromagnetic pseudobrookite phase (Fe2TiO5). The samples treated at 500 and 650°C show a dependence on the preparation method. Those prepared by coprecipitation give at 500°C the pure anatase phase in which the Fe3+ has a higher solubility (≥ 1%); those prepared by impregnation give the anatase phase accompanied by a variable amount of rutile. The treatment at 650°C provokes the partial transformation of anatase to rutile and the complete development of the Fe2TiO5 phase. The relevance of these results to the photocatalytic properties shown by these solids for the photoreduction of dinitrogen to ammonia is discussed.  相似文献   

18.
A new preparation method for Au/TiO2 nanotubes (NTs) by combing sol–gel with hydrothermal treatment technique was developed. The TiO2 NTs calcined at 300 °C were nearly uniform, and the gold particles were distributed homogeneously. The possible formation mechanism was suggested. The 5 % Au/TiO2 NTs calcined at 300 °C had the best catalytic activity for CO oxidation, and their conversion of CO remained at 100 % during 60 h on stream. This preparation method could improve the thermal stability of Au/TiO2 nanotube catalysts.  相似文献   

19.
On the Chemistry of Bauxite Extraction. II. Studies in the System Na2O? CaO? Al2O3? TiO2? H2O between 100 and 275°C The formation of crystalline compounds in the system Na2O? CaO? Al2O3? TiO2? H2O was studied between 100 and 275°C. With caustic alkali concentrations up to 300 g Na2O/l the calcium aluminate 3 CaO · Al2O3 · 6 H2O is formed. With rising temperatures two different calcium titanates, among them perovskite, CaTiO3, are identified. Above 200°C perovskite is formed at all concentrations investigated.  相似文献   

20.
The effects of γ-irradiation (0.2–1.6 MGy), thermal treatment and doping with MoO3 and V2O5 (0.25–4 mol%) on the surface and catalytic properties of manganese oxides prepared by thermal decomposition of manganese carbonate at 400°C and 600°C have been investigated. The techniques employed were X-ray diffraction, nitrogen adsorption at −196°C, oxidation of CO by O2 at 120–220°C and decomposition of H2O2 at 20–50°C. The results revealed that γ-irradiation decreased the particle size of manganese oxides, increased their specific surface areas, decreased the amount of surface excess oxygen and decreased their catalytic activities. The doping with MoO3 and V2O5 conducted at 600°C brought about a measurable decrease in the BET-surface area and catalytic activities of the treated solids. These results were discussed in terms of splitting of manganese oxide particles and removal of chemisorbed oxygen by treating with γ-irradiation and formation of manganese molybdate and vanadates by treating with the used dopant oxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号