首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large eddy simulation based on filtered vorticity transport equation has been coupled with filtered probability density function transport equation for scalar field, to predict the velocity and passive scalar fields. The filtered vorticity transport has been formulated using diffusion‐velocity method and then solved using the vortex method. The methodology has been tested on a spatially growing mixing layer using the two‐dimensional vortex‐in‐cell method in conjunction with both Smagorinsky and dynamic eddy viscosity subgrid scale models for an anisotropic flow. The transport equation for filtered probability density function is solved using the Lagrangian Monte‐Carlo method. The unresolved subgrid scale convective term in filtered density function transport is modelled using the gradient diffusion model. The unresolved subgrid scale mixing term is modelled using the modified Curl model. The effects of subgrid scale models on the vorticity contours, mean streamwise velocity profiles, root‐mean‐square velocity and vorticity fluctuations profiles and negative cross‐stream correlations are discussed. Also the characteristics of the passive scalar, i.e. mean concentration profiles, root‐mean‐square concentration fluctuations profiles and filtered probability density function are presented and compared with previous experimental and numerical works. The sensitivity of the results to the Schmidt number, constant in mixing frequency and inflow boundary conditions are discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
The velocity field of a circular water jet impinging onto a flat plate has been measured using particle image velocimetry, or PIV. The velocity field has been recorded at several instants in time, producing thousands of simultaneous two-dimensional velocity measurements for each realization. The instantaneous velocity, vorticity and rate-of-strain fields reveal the interaction of vortices near the impinging wall within the radial wall jet downstream from the stagnation point. An ensemble average of the instantaneous fields produces a mean velocity field of the jet flow, which reveals many of the processes leading to boundary layer separation and vortex breakaway within the wall jet. The PIV system extracts the velocity measurements using a two-dimensional autocorrelation method, and can obtain thousands of highly accurate velocity measurements within a few minutes. The structure found in these experiments may be similar to the ground level structure of atmospheric microburst phenomena.A version of this paper was presented at the 11th Symposium on Turbulence, University of Missouri-Rolla, 17–19 October 1988  相似文献   

3.
A large eddy Simulation based on the diffusion‐velocity method and the discrete vortex method is presented. The vorticity‐based and eddy viscosity type subgrid scale model simulating the enstrophy transfer between the large and small scale appears as a convective term in the diffusion‐velocity formulation. The methodology has been tested on a spatially growing mixing layer using the two‐dimensional vortex‐in‐cell method and the Smagorinsky subgrid scale model. The effects on the vorticity contours, momemtum thickness, mean streamwise velocity profiles, root‐mean‐square velocity and vorticity fluctuations and negative cross‐stream correlation are discussed. Comparison is made with experiment and numerical work where diffusion is simulated using random walk. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
An experimental and numerical analysis of the interaction between a plane horizontal water flow in a rectangular channel (free water current) and a plane thin water jet (water jet curtain) is presented; the jet flows out vertically from either a slot nozzle in the bottom of the channel or the crest of a rigid spillway at a velocity appreciably (several times) greater than the water velocity in the channel. Numerical calculations were carried out using the STAR-CD software package preliminarily tested against the experimental data obtained. The dependence of the water level in the channel at a certain distance ahead of the jet barrier on the main jet parameters and the water flow rate in the horizontal channel is studied. It is found that in the region of the interface between the flows both steady and unsteady (self-oscillatory) flow patterns can be realized. Steady stream/jet interaction patterns of the “ejection” and “ejection-spillway” types are distinguished and a criterion separating these regimes is obtained. The notion of a rigid spillway equivalent to a jet curtain is introduced and an approximate dependence of its height on the relevant parameters of the problem is derived. The possibility of effectively controlling the water level ahead of a rigid spillway with a sharp edge by means of a plane water jet flowing from its crest is investigated. The boundary of transition to self-oscillation interaction patterns in the region of the flow interface is determined. The structure of these flows and a possible mechanism of their generation are described. Within the framework of the inviscid incompressible fluid model in the approximate formulation for a “thin” jet, an analytical dependence of the greatest possible depth of a reservoir filled with a heavy fluid at rest and screened by a vertical jet barrier on the jet parameters is obtained.  相似文献   

5.
A new analysis method of the jet/vortex interaction is presented to better understand the effect of each vortical structure on the others composing the jet and even on itself. Vortical structures are isolated from each other and the velocity field they produce is calculated by means of the Biot–Savart law. The structure influence on each another is then distinguished from the others by using its velocity field in the calculation of the vorticity momentum equations. Based on 3D‐datafields provided by a large‐eddy‐simulation (LES) of the interaction between a Lamb–Oseen vortex and a turbulent round jet, a post‐processing tool educes the vortical structures and quantifies the different vorticity momentum equations terms. The study has been limited to the first steps of the interaction regime when there are still few vortical structures so that the subsequent analysis of the post‐process results remains simple enough to be performed. The present method confirmed the intensification of azimuthal structures as they roll up around the main vortex. Core disturbance of the latter was found to be initially caused by those structures and not by core dynamic instabilities, which become dominant with the appearance of non‐linear mechanisms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The interaction between multiple incompressible air jets has been studied numerically and experimentally. The numerical predictions have been first validated using experimental data for a single jet configuration. The spreading features of five unequal jets in the configuration of one larger central jet surrounded by four smaller equi‐distant jets, have been studied, for different lateral spacing ratios of 1.5, 2.0 and 2.5 and a central jet Reynolds number of 1.24×105 (corresponding to a Mach number of 0.16). Flow of five equal jets has also been simulated, for the sake of comparison. The jet interactions commence at an axial distance of about 3–4 diameters and complete by an axial distance of about 10 diameters for the lowest spacing ratio of 1.5. For larger spacing ratios, the length required for the start and completion of jet interaction increase. Peripheral jets bend more towards the central jet and merge at a smaller distance, when their sizes are smaller than that of the central jet. The entrainment ratio for multiple jets is higher than that for a single jet. Excellent agreement is observed between the experimental data and theoretical predictions for both mean flow field and turbulent quantities, at regions away from the jet inlet. The potential core length and initial jet development, however, are not predicted very accurately due to differences in the assumed and actual velocity profiles at the jet inlet. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
A new vortex particle‐in‐cell method for the simulation of three‐dimensional unsteady incompressible viscous flow is presented. The projection of the vortex strengths onto the mesh is based on volume interpolation. The convection of vorticity is treated as a Lagrangian move operation but one where the velocity of each particle is interpolated from an Eulerian mesh solution of velocity–Poisson equations. The change in vorticity due to diffusion is also computed on the Eulerian mesh and projected back to the particles. Where diffusive fluxes cause vorticity to enter a cell not already containing any particles new particles are created. The surface vorticity and the cancellation of tangential velocity at the plate are related by the Neumann conditions. The basic framework for implementation of the procedure is also introduced where the solution update comprises a sequence of two fractional steps. The method is applied to a problem where an unsteady boundary layer develops under the impact of a vortex ring and comparison is made with the experimental and numerical literature. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents two‐dimensional and unsteady RANS computations of time dependent, periodic, turbulent flow around a square block. Two turbulence models are used: the Launder–Sharma low‐Reynolds number k–ε model and a non‐linear extension sensitive to the anisotropy of turbulence. The Reynolds number based on the free stream velocity and obstacle side is Re=2.2×104. The present numerical results have been obtained using a finite volume code that solves the governing equations in a vertical plane, located at the lateral mid‐point of the channel. The pressure field is obtained with the SIMPLE algorithm. A bounded version of the third‐order QUICK scheme is used for the convective terms. Comparisons of the numerical results with the experimental data indicate that a preliminary steady solution of the governing equations using the linear k–ε does not lead to correct flow field predictions in the wake region downstream of the square cylinder. Consequently, the time derivatives of dependent variables are included in the transport equations and are discretized using the second‐order Crank–Nicolson scheme. The unsteady computations using the linear and non‐linear k–ε models significantly improve the velocity field predictions. However, the linear k–ε shows a number of predictive deficiencies, even in unsteady flow computations, especially in the prediction of the turbulence field. The introduction of a non‐linear k–ε model brings the two‐dimensional unsteady predictions of the time‐averaged velocity and turbulence fields and also the predicted values of the global parameters such as the Strouhal number and the drag coefficient to close agreement with the data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The deviation of a jet from the straight direction due to the presence of a lateral wall is investigated from the experimental point of view. This flow condition is known as Coanda jet (from the Romanian aerodynamicist Henry Marie Coanda who discovered and applied it at the beginning of XXth century) or offset jet. The objective of the work is to detail the underlying mechanisms of such a phenomenon aiming to use it as a flow control method at polluted river flows mouth. To do this, a large laboratory free-surface tank with an incoming channel has been set up and velocity field measurements are performed by Optical Flow methods (namely Feature Tracking). Preliminary tests on the well-known free jet configuration without any marine structure (i.e. lateral wall) are performed to allow comparison with free jet scaling and self-similar solutions. The presence of the free-surface gives rise to centerline velocity decay which is lower than in free unbounded plane or circular jets due to the vertically limited ambient fluid entrainment. In the second part of the paper, the effect of a lateral wall on the jet configuration is examined by placing it at different lateral distances from the jet outlet. The resulting velocity fields clearly show an inclined Coanda jet with details which seems to depend on the lateral wall distance itself. The analysis of self-similarity along the inclined jet direction reveals that for wall distances larger than 5 jet widths this dependence almost disappears.  相似文献   

10.
This paper deals with the study of the dynamics of net vapor generation point in the boiling channel of the steam generator of Kaiga‐1 nuclear power plant. The dynamics has been studied by perturbing liquid velocity at the inlet of boiling channel with a step function and heating rate with a ramp function. Both finite volume method (FVM) and finite difference method (FDM) have been applied to solve the model equations that have been developed to predict boiling boundary. The effect of thermal non‐equilibrium conditions on subcooled boiling has been taken into consideration. A comparative study of the two methods has been carried out based on the analytical solution of the equations. The study shows that at higher system frequency, increasing number of computational grids increase the accuracy of numerical solutions using FVM while FDM fails to achieve the same. The superiority of FVM over FDM for the problem has also been confirmed by grid convergence analysis. An attempt has also been made to find the analytical solution of the effect of change of heat input on boiling boundary, which is an essential part of computations for the simulation of startup and shutdown of the steam generator. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
 A novel fluid mixing device, described elsewhere, has been shown to have a dramatic effect on the combustion characteristics of a fuel jet. The main features of the flow are the deflection of the jet between 30° and 60° from the nozzle axis and its precession about that axis. Many of the factors governing the nozzle instabilities which drive the mixing in the external field are imprecisely defined. It is the aim of the present paper to examine, in isolation from the nozzle instabilities, the influence of precession on a deflected jet as it proceeds downstream from the nozzle exit. The fluid dynamically driven phenomena within the nozzle which cause the precession are in the present investigation replaced by a mechanical rotation of a nozzle from which is emerging a jet which is orientated at an angle from the nozzle axis. By this means the effect of precession on the deflected jet can be investigated independently of the phenomena which cause the precession. The experimental data reported here has been obtained from measurements made using a miniature, rapid response four-hole “Cobra” pitot probe in the field of the precessing jet. Phase-averaged three dimensional velocity components identify the large scale motions and overall flow patterns. The measured Reynolds stresses complement the velocity data and are found to be compatible with the higher entrainment rates of the jet found in earlier investigations. Received: 8 November 1995 / Accepted: 27 September 1996  相似文献   

12.
The dynamical equations for the energy in a turbulent channel flow have been developed by using the Karhunen‐Loéve modes to represent the velocity field. The energy balance equations show that all the energy in the flow originates from the applied pressure gradient acting on the mean flow. Energy redistribution occurs through triad interactions, which is basic to understanding the dynamics. Each triad interaction determines the rate of energy transport between source and sink modes via a catalyst mode. The importance of the proposed method stems from the fact that it can be used to determine both the rate of energy transport between modes as well as the direction of energy flow. The effectiveness of the method in determining the mechanisms by which the turbulence sustains itself is demonstrated by performing a detailed analysis of triad interactions occurring during a turbulent burst in a minimal channel flow. The impact on flow modification is discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
The results of measurements of all three components of the mean velocity vector, the Reynolds normal and primary shear stresses and the mean static pressure in a turbulent free jet, issuing from a sharp-edged cruciform orifice, are presented in this paper. The measurements were made with an x-array hot-wire probe and a pitot-static tube in the near flow field of the jet. The Reynolds number, based upon the equivalent diameter of the orifice, was 1.70 × 105. In addition to the quantities measured directly, the mean streamwise centreline velocity decay, the jet half-velocity widths, the jet spreading rate, the mean streamwise vorticity, the mass entrainment rate, the integral momentum flux and the one-dimensional energy spectra have been derived from the measured data. The results show that the mean streamwise centreline velocity decay rate of the cruciform jet is higher than that of a round jet issuing from an orifice with the same exit area as that of the cruciform orifice. The mean streamwise velocity field changed shape continuously from a cruciform close to the orifice exit plane to circular at 12 and half equivalent diameters downstream. The mean streamwise vorticity field, up to about three equivalent diameters downstream of the orifice exit plane, consists of four pairs of counter-rotating cells, which are aligned with the four edges in the centre of the cruciform orifice.  相似文献   

14.
 A laminar wall jet undergoing transition is investigated using the particle image velocimetry (PIV) technique. The plane wall jet is issued from a rectangular channel, with the jet-exit velocity profile being parabolic. The Reynolds number, based on the exit mean velocity and the channel width, is 1450. To aid the understanding of the global flow features, laser-sheet/smoke flow visualizations are performed along streamwise, spanwise, and cross-stream directions. Surface pressure measurements are made to correlate the instantaneous vorticity distribution with the surface pressure fluctuations. The instantaneous velocity and vorticity field measurements provide the basis for understanding the formation of the inner-region vortex and the subsequent interactions between the outer-region (free-shear-layer region) and inner-region (boundary-layer region) vortical structures. Results show that under the influence of the free-shear-layer vortex, the local boundary layer becomes detached from the surface and inviscidly unstable, and a vortex is formed in the inner region. Once this vortex has formed, the free-shear-layer vortex and the inner-region vortex form a vortex couple and convect downstream. The mutual interactions between these inner- and outer-region vortical structures dominate the transition process. Farther downstream, the emergence of the three-dimensional structure in the free shear layer initiates complete breakdown of the flow. Received: 8 November 1995/Accepted: 6 November 1996  相似文献   

15.
The near field mean flow and turbulence characteristics of a turbulent jet of air issuing from a sharp-edged isosceles triangular orifice into still air surroundings have been examined experimentally using hot-wire anemometry and a pitot-static tube. For comparison, some measurements were made in an equilateral triangular free jet and in a round free air jet, both of which also issued from sharp-edged orifices. The Reynolds number, based on the orifice equivalent diameter, was 1.84×105 in each jet. The three components of the mean velocity vector, the Reynolds normal and primary shear stresses, the one-dimensional energy spectra of the streamwise fluctuating velocity signals and the mean static pressure were measured. The mean streamwise vorticity, the half-velocity widths, the turbulence kinetic energy and the local shear in the mean streamwise velocity were obtained from the measured data. It was found that near field mixing in the equilateral triangular jet is faster than in the isosceles triangular and round jets. The mean streamwise vorticity field was found to be dominated by counter-rotating pairs of vortices, which influenced mixing and entrainment in the isosceles triangular jet. The one-dimensional energy spectra results indicated the presence of coherent structures in the near field of all three jets and that the equilateral triangular jet was more energetic than the isosceles triangular and round jets.  相似文献   

16.
This study investigates the experimentally observed hysteresis in the mean flow field of an annular swirling jet with a stepped‐conical nozzle. The flow is simulated using the Reynolds‐averaged Navier–Stokes (RANS) approach for incompressible flow with a k–ε and a Reynolds stress transport (RSTM) turbulence model. Four different flow structures are observed depending on the swirl number: ‘closed jet flow’, ‘open jet flow low swirl’, ‘open jet flow high swirl’ and ‘coanda jet flow’. These flow patterns change with varying swirl number and hysteresis at low and intermediate swirl numbers is revealed when increasing and subsequently decreasing the swirl. The influence of the inlet velocity profile on the transitional swirl numbers is investigated. When comparing computational fluid dynamics with experiments, the results show that both turbulence models predict the four different flow structures and the associated hysteresis and multiple solutions at low and intermediate swirl numbers. Therefore, a good agreement exists between experiments and numerics. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
An experimental investigation is presented of a turbulent jet issuing from a round sharp-edged orifice plate (OP) into effectively unbounded surroundings. Planar measurements of velocity were conducted using Particle Image Velocimetry (PIV) in the near and transition regions. The Reynolds number, based on the jet initial diameter and velocity, is approximately 72,000. The instantaneous and mean velocities, Reynolds normal and shear stresses were obtained. The centerline velocity decay and the half-velocity radius were derived from the mean velocity. It is revealed that primary coherent structures occur in the near field of the OP jet and that they are typically distributed asymmetrically with respect to the nozzle axis. Comparison of the present PIV and previous hot-wire measurements for the OP jet suggests that high initial turbulence intensity leads to reduced rates of decay and spread of the mean flow field and moreover a lower rate of variation of the turbulence intensity. Results also show that self-similarity of the mean flow is well established from the transition region while the turbulent statistics are far from self-similar within the measured range to 16 diameters.  相似文献   

18.
Most of the fundamental studies of the use of air‐jet vortex generators (AJVGs) have concentrated on their potential ability to inhibit boundary layer separation on aerofoils. However, AJVGs may be of use in controlling or enhancing certain features of internal duct flows. For example, they may be of use in controlling the boundary layer at the entrance to engine air intakes, or as a means of increasing mixing and heat transfer. The objective of this paper is to analyse the flow field in the proximity of an air‐jet vortex generator array in a duct by using two local numerical models, i.e. a simple flat plate model and a more geometrically faithful sector model. The sector model mirrors the circular nature of the duct's cross‐section and the centre line conditions on the upper boundary. The flow was assumed fully turbulent and was solved using the finite volume, Navier–Stokes Code CFX 4 (CFDS, AEA Technology, Harwell) on a non‐orthogonal, body‐fitted, grid using the k–ε turbulence model and standard wall functions. Streamwise, vertical and cross‐stream velocity profiles, circulation and peak vorticity decay, peak vorticity paths in cross‐stream and streamwise direction, cross‐stream vorticity profiles and cross‐stream wall shear stress distributions were predicted. Negligible difference in results was observed between the flat plate and the sector model, since the produced vortices were small relative to the duct diameter and close to the surface. The flow field was most enhanced, i.e. maximum thinning of the boundary layer, with a configuration of 30° pitch and 75° skew angle. No significant difference in results could be observed between co‐ and counter‐rotating vortex arrays. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Experimental results on the near field development of a free rectangular jet with aspect ratio 10 are presented. The jet issues from a sharp-edged orifice attached to a rectangular settling chamber at Reh  23,000, based on slot width, h. Measurements on cross plane grids were obtained with a two-component hot wire anemometry probe, which provided information on the three dimensional characteristics of the flow field. Two key features of this type of jet are mean axial velocity profiles presenting two off axis peaks, commonly mentioned as saddleback profiles, and a predominant dumbbell shape as described by, for example, a contour of the axial mean velocity. The saddleback shape is found to be significantly influenced by the vorticity distribution in the transverse plane of the jet, while the dumbbell is traced to two terms in the axial mean vorticity transport equation that diffuse fluid from the centre of the jet towards its periphery. At the farthest location where measurements were taken, 30 slot widths from the jet exit, the flow field resembles that of an axisymmetric jet.  相似文献   

20.
Vortex behavior and characteristics in a confined rectangular jet with a co-flow were examined using vortex swirling strength as a defining characteristic. On the left side of the jet, the positively (counterclockwise) rotating vortices are dominant, while negatively rotating vortices are dominant on the right side of the jet. The characteristics of vortices, such as population density, average size and strength, and deviation velocity, were calculated and analyzed in both the cross-stream direction and the streamwise direction. In the near-field of the jet, the population density, average size and strength of the dominant direction vortices show high values on both sides of the center stream with a small number of counter-rotating vortices produced in the small wake regions close to jet outlet. As the flow develops, the wake regions disappear, these count-rotating vortices also disappear, and the population of the dominant direction vortices increase and spread in the jet. The mean size and strength of the vortices decrease monotonically with streamwise coordinate. The signs of vortex deviation velocity indicate the vortices transfer low momentum to high-velocity region and high momentum to the low velocity region. The developing trends of these characteristics were also identified by tracing vortices using time-resolved particle image velocimetry data. Both the mean tracked vortex strength and size decrease with increasing downstream distance overall. At the locations of the left peak of turbulent kinetic energy, the two-point spatial cross-correlation of swirling strength with velocity fluctuation and concentration fluctuation were calculated. All the correlation fields contain one positively correlated region and one negatively correlated region although the orientations of the correlation fields varied, due to the flow transitioning from wake, to jet, to channel flow. Finally, linear stochastic estimation was used to calculate conditional structures. The large-scale structures in the velocity field revealed by linear stochastic estimation are spindle-shaped with a titling stream-wise major axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号