首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new synthesis of (Aib‐Pro)n oligopeptides (n=2, 3, and 4) via azirine coupling by using the dipeptide synthon methyl N‐(2,2‐dimethyl‐2H‐azirin‐3‐yl)‐L ‐prolinate ( 1b ; Fig. 1) is presented. The most important feature of the employed protocol is that no activation of the acid component is necessary, i.e., no additional reagents are required, and the coupling reaction is performed under mild conditions at room temperature. As an attempt to provide an answer to the question of the preferred conformation of the prepared molecules, we carried out experiments by using NMR techniques and X‐ray crystallography. For example, in the case of the hexapeptide 11 , it was possible to compare the conformations in the crystalline state and in solution. After the selective hydrolysis of the methyl ester p‐BrBz‐(Aib‐Pro)4‐OMe ( 13 ) under basic conditions, the corresponding octapeptide acid was obtained, which was then converted into the octapeptide amide p‐BrBz‐(Aib‐Pro)4‐NHC6H13 ( 15 ) by using standard coupling conditions and activating reagents (HOBt/TBTU/DIEA) of the peptide synthesis. The conformation of this compound, as well as those of the tetrapeptides 14 and 18 , was also established by X‐ray crystallography and in solution by NMR techniques. In the crystalline state, a β‐bend ribbon structure is the preferred conformation, and similar conformations are formed in solution.  相似文献   

2.
A series of pentapeptide derivatives containing α,α‐disubstituted α‐amino acids have been prepared by a combination of the ‘azirine/oxazolone method’ and segment condensations. X‐Ray crystal‐structure determinations of the molecular structures confirmed the presence of helical conformations stabilized by β‐turns of type III or III′. Pentapeptides containing (R)‐Phe(2Me) form a right‐handed helix, whereas those containing (S)‐Phe(2Me) adopt a left‐handed helical structure.  相似文献   

3.
The synthesis of methyl N‐(1‐aza‐6‐oxaspiro[2.5]oct‐1‐en‐2‐yl)‐L ‐prolinate ( 1e ) has been performed by consecutive treatment of methyl N‐[(tetrahydro‐2H‐pyran‐4‐yl)thiocarbonyl]‐L ‐prolinate ( 5 ) with COCl2, 1,4‐diazabicyclo[2.2.2]octane (DABCO), and NaN3 (Scheme 1). As the first example of a novel class of dipeptide synthons, 1e has been shown to undergo the expected reactions with carboxylic acids and thioacids (Scheme 2). The successful preparation of the nonapeptide 16 , which is an analogue of the C‐terminal nonapeptide of the antibiotic Trichovirin I 1B, proved that 1e can be used in peptide synthesis as a dipeptide building block (Scheme 3). The structure of 7 has been established by X‐ray crystal‐structure analysis (Figs. 1 and 2).  相似文献   

4.
The reaction of methyl N‐(2,2‐dimethyl‐2H‐azirin‐3‐yl)‐L ‐prolinate ( 2a ) with thiobenzoic acid at room temperature gave the endothiopeptide Bz‐AibΨ[CS]‐Pro‐OMe ( 7 ) in high yield. In an analogous manner, (benzyloxy)carbonyl (Z)‐protected proline was transformed into the thioacid, which was reacted with 2a to give the endothiotripeptide Z‐Pro‐AibΨ[CS]‐Pro‐OMe ( 12 ). The corresponding thioacid of 7 was prepared in situ via saponification, formation of a mixed anhydride, and treatment with H2S. A second reaction with 2a led to the endodithiotetrapeptide 9 , but extensive epimerization at Pro2 was observed. Similarly, saponification of 12 and coupling with either 2a or H‐Phe‐OMe and 2‐(1H‐benzotriazol‐1‐yl)‐1,1,3,3‐tetramethyluronium tetrafluoroborate/1‐hydroxy‐1H‐benzotriazole (TBTU/HOBt) gave the corresponding endothiopeptides as mixtures of two epimers. The synthesis of the pure diastereoisomer BzΨ[CS]‐Aib‐Pro‐AibΨ[CS]‐N(Me)Ph ( 21 ) was achieved via isomerization of 7 to BzΨ[CS]‐Aib‐Pro‐OMe ( 16 ), transformation into the corresponding thioacid, and reaction with N,2,2‐trimethyl‐N‐phenyl‐2H‐azirin‐3‐amine ( 1a ). The structures of 12 and 21 were established by X‐ray crystallography.  相似文献   

5.
The protected poly‐Aib oligopeptides Z‐(Aib)n‐N(Me)Ph with n=2–6 were prepared according to the ‘azirine/oxazolone method’, i.e., by coupling amino or peptide acids with 2,2,N‐trimethyl‐N‐phenyl‐2H‐azirin‐3‐amine ( 1a ) as an Aib synthon (Scheme 2). Following the same concept, the segments Z‐(Aib)3‐OH ( 9 ) and H‐L ‐Pro‐(Aib)3‐N(Me)Ph ( 20 ) were synthesized, and their subsequent coupling with N,N′‐dicyclohexylcarbodiimide (DCC)/ZnCl2 led to the protected heptapeptide Z‐(Aib)3‐L ‐Pro‐(Aib)3‐N(Me)Ph ( 21 ; Scheme 3). The crystal structures of the poly‐Aib oligopeptide amides were established by X‐ray crystallography confirming the 310‐helical conformation of Aib peptides.  相似文献   

6.
The first total synthesis of the α‐oxo amide‐based natural product, N‐(3‐guanidinopropyl)‐2‐(4‐hydroxyphenyl)‐2‐oxoacetamide ( 3 ), isolated from aqueous extracts of hydroid Campanularia sp., has been achieved. The α‐oxo amide 12 , prepared via the oxidative amidation of 1‐[4‐(benzyloxy)phenyl]‐2,2‐dibromoethanone ( 9a ) with 4‐{[(tert‐butyl)(dimethyl)silyl]oxy}butan‐1‐amine ( 10a ), has been used as the key intermediate in the total synthesis of 3 as HBr salt. On the way, an expeditious total synthesis of polyandrocarpamide C ( 2c ), isolated from marine ascidian Polyandrocarpa sp., was carried out in four steps.  相似文献   

7.
The preparation of the title compounds was achieved via the ‘azirine/oxazolone method’ starting from the corresponding γ‐hydroxy acids. Upon subjecting the γ‐hydroxy‐N‐[1‐(dimethylcarbamoyl)ethyl]butanamides 4 to the so‐called ‘direct amide cyclization’ (DAC) conditions, chlorinated acids 11 or imino lactones 12 were obtained as the sole products instead of the expected cyclodepsipeptides A or their cyclodimers (Scheme 4). Variation of the substituents in 4 did not affect the outcome of the reaction and a mechanism for the formation of both products from the intermediate oxazolone 13 has been proposed. Under the acidic conditions of the DAC, the imino lactones are formed as their HCl salts 12 , which, in polar solvents or on silica gel, reacted further to give the chlorinated acids 11 . Stabilization of the imino lactones was achieved by increasing the substitution in the five‐membered ring, and their structure, in the form of the hydrochlorides, was established independently by X‐ray crystallography (Fig. 4). A derivative 15 of the imino lactone 12a was prepared by the reaction with the 2H‐azirin‐3‐amine 10a ; its structure was also established by an X‐ray crystal‐structure determination (Fig. 3). Furthermore, the structures of the ω‐chloro acids 11a and 11b were determined by X‐ray crystallography (Fig. 2).  相似文献   

8.
β‐Bromo‐α,β‐unsaturated carboxylic acids are carbonylatively cyclized with 2,2‐dimethylhydrazine under carbon monoxide pressure in THF in the presence of a catalytic amount of a palladium catalyst along with a base to give 1‐(dimethylamino)‐1H‐pyrrole‐2,5‐diones. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
On the basis of the principle of combination of active groups, a series of novel N‐(4‐([2,2′:5′,2′′‐terthiophen]‐5‐yl)‐2‐methylbut‐3‐yn‐2‐yl) benzamide derivatives were designed, synthesized and systematically evaluated for their antiviral activity against tobacco mosaic virus (TMV). The bioassay results showed that most of these compounds displayed good anti‐TMV activity, and some of them exhibited higher antiviral activity than commercial Ningnanmycin. Especially, compound 8e with excellent anti‐TMV activity (inactivation activity, 92.3%/500 µg·mL?1; curative activity, 85.7%/500 µg·mL?1 and protection activity, 64.7%/500 µg·mL?1) emerged as a potential inhibitor of plant virus TMV. Quantitative structure‐activity relationship studies proved that the van der Waals volume (V) and electronic parameter (∑(∑σo+σp) and ∑σm) for the substituent R1 were very important for antiviral activities in this class of compounds.  相似文献   

10.
A series of N‐aryl 2‐alkenamides were produced efficiently by treating N‐aryl 3‐(phenylsulfonyl)‐propanamides with potassium tert‐butoxide in THF at 0°C. With out isolation, it was further treated with an additional equivalent of potassium tert‐butoxide and allyl bromide to give N‐allyl N‐aryl 2‐alkenamides in one pot in good yields. Followed by a ring‐closing metathesis reaction, these N‐allyl N‐aryl 2‐alkenamides were respectively converted into corresponding N‐aryl α,β‐unsaturated γ‐lactams in moderate yields.  相似文献   

11.
The title peptide, N‐benzyloxycarbonyl‐α‐aminoisobutyryl‐α‐aminoisobutyryl‐α‐aminoisobutyryl‐L‐alanine tert‐butyl ester or Z‐Aib‐Aib‐Aib‐L‐Ala‐OtBu (Aib is α‐aminoisobutyric acid, Z is benzyloxycarbonyl and OtBu indicates the tert‐butyl ester), C27H42N4O7, is a left‐handed helix with a right‐handed conformation in the fourth residue, which is the only chiral residue. There are two 4→1 intramolecular hydrogen bonds in the structure. In the lattice, molecules are hydrogen bonded to form columns along the c axis.  相似文献   

12.
An efficient two‐step method for the preparation of 3‐(2‐hydroxyethoxy)‐ or 3‐(3‐hydroxypropoxy)isobenzofuran‐1(3H)‐ones 3 has been developed. Thus, the reaction of 1‐(1,3‐dioxol‐2‐yl)‐ or 1‐(1,3‐dioxan‐2‐yl)‐2‐lithiobenzenes, generated in situ by the treatment of 1‐bromo‐2‐(1,3‐dioxol‐2‐yl)‐ or 1‐bromo‐2‐(1,3‐dioxan‐2‐yl)benzenes 1 with BuLi in THF at ?78°, with (Boc)2O afforded tert‐butyl 2‐(1,3‐dioxol‐2‐yl)‐ or 2‐(1,3‐dioxan‐2‐yl)benzoates 2 , which can subsequently undergo facile lactonization on treatment with CF3COOH (TFA) in CH2Cl2 at 0° to give the desired products in reasonable yields.  相似文献   

13.
To complete our panorama in structure–activity relationships (SARs) of sandalwood‐like alcohols derived from analogues of α‐campholenal (= (1R)‐2,2,3‐trimethylcyclopent‐3‐ene‐1‐acetaldehyde), we isomerized the epoxy‐isopropyl‐apopinene (?)‐ 2d to the corresponding unreported α‐campholenal analogue (+)‐ 4d (Scheme 1). Derived from the known 3‐demethyl‐α‐campholenal (+)‐ 4a , we prepared the saturated analogue (+)‐ 5a by hydrogenation, while the heterocyclic aldehyde (+)‐ 5b was obtained via a Bayer‐Villiger reaction from the known methyl ketone (+)‐ 6 . Oxidative hydroboration of the known α‐campholenal acetal (?)‐ 8b allowed, after subsequent oxidation of alcohol (+)‐ 9b to ketone (+)‐ 10 , and appropriate alkyl Grignard reaction, access to the 3,4‐disubstituted analogues (+)‐ 4f,g following dehydration and deprotection. (Scheme 2). Epoxidation of either (+)‐ 4b or its methyl ketone (+)‐ 4h , afforded stereoselectively the trans‐epoxy derivatives 11a,b , while the minor cis‐stereoisomer (+)‐ 12a was isolated by chromatography (trans/cis of the epoxy moiety relative to the C2 or C3 side chain). Alternatively, the corresponding trans‐epoxy alcohol or acetate 13a,b was obtained either by reduction/esterification from trans‐epoxy aldehyde (+)‐ 11a or by stereoselective epoxidation of the α‐campholenol (+)‐ 15a or of its acetate (?)‐ 15b , respectively. Their cis‐analogues were prepared starting from (+)‐ 12a . Either (+)‐ 4h or (?)‐ 11b , was submitted to a Bayer‐Villiger oxidation to afford acetate (?)‐ 16a . Since isomerizations of (?)‐ 16 lead preferentially to β‐campholene isomers, we followed a known procedure for the isomerization of (?)‐epoxyverbenone (?)‐ 2e to the norcampholenal analogue (+)‐ 19a . Reduction and subsequent protection afforded the silyl ether (?)‐ 19c , which was stereoselectively hydroborated under oxidative condition to afford the secondary alcohol (+)‐ 20c . Further oxidation and epimerization furnished the trans‐ketone (?)‐ 17a , a known intermediate of either (+)‐β‐necrodol (= (+)‐(1S,3S)‐2,2,3‐trimethyl‐4‐methylenecyclopentanemethanol; 17c ) or (+)‐(Z)‐lancifolol (= (1S,3R,4Z)‐2,2,3‐trimethyl‐4‐(4‐methylpent‐3‐enylidene)cyclopentanemethanol). Finally, hydrogenation of (+)‐ 4b gave the saturated cis‐aldehyde (+)‐ 21 , readily reduced to its corresponding alcohol (+)‐ 22a . Similarly, hydrogenation of β‐campholenol (= 2,3,3‐trimethylcyclopent‐1‐ene‐1‐ethanol) gave access via the cis‐alcohol rac‐ 23a , to the cis‐aldehyde rac‐ 24 .  相似文献   

14.
The mass spectra of a series of N‐aryl α,β‐unsaturated γ‐lactams were studied. Besides the molecular ion, the three characteristic fragments such as [M+‐29], [M+‐55], and [M+‐82] were commonly found in a series of N‐Aryl α,β‐unsaturated γ‐lactams in EI/MS. Further more the mechanism for the interpretation of these fragments is also de scribed.  相似文献   

15.
16.
A series of activated urethane‐type derivatives of γ‐benzyl‐L ‐glutamate were synthesized, and their potential as monomers for polypeptide synthesis was investigated. The derivatives of the focus of this work were a series of N‐aryloxycarbonyl‐γ‐benzyl‐L ‐glutamate 1 , of which aryl groups were phenyl, 4‐chlorophenyl, and 4‐nitrophenyl. These urethanes 1 were reactive in polar solvents such as dimethylsulfoxide, N,N‐dimethylformamide (DMF), and N,N‐dimethylacetamide (DMAc), and were efficiently converted into poly(γ‐benzyl‐L ‐glutamate) (poly(BLG)) under mild conditions; at 60 °C without addition of any catalyst. Among the three urethanes, that having 4‐nitrophenoxycarbonyl group 1c was the most reactive to give poly(BLG) efficiently, as was expected from the highly electron deficient nature of the nitrophenoxycarbonyl group. On the other hand, the urethane 1a having phenoxycarbonyl group was also efficiently converted into poly(BLG), in spite of the intrinsically less electrophilicity of the phenoxycarbonyl group. In addition, the successful formation of poly(BLG) by the reaction of 1a favored its diluted concentration (0.1 M) much more than 2.0 M, the optimum initial concentration for 1c . 1H NMR spectroscopic analyses of the reactions in situ revealed that the predominant pathway from 1 to poly(BLG) involved the intramolecular cyclization of 1 into the corresponding N‐carboxyanhydride, with release of phenol and its successive ring‐opening polymerization with release of carbon dioxide. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2649–2657, 2008  相似文献   

17.
The biomimic reactions of N‐phosphoryl amino acids, which involved intramolecular penta‐coordinate phosphoric‐carboxylic mixed anhydrides, are very important in the study of many biochemical processes. The reactivity difference between the α‐COOH group and β‐COOH in phosphoryl amino acids was studied by experiments and theoretical calculations. It was found that the α‐COOH group, and not β‐COOH, was involved in the ester exchange on phosphorus in experiment. From MNDO calculations, the energy of the penta‐coordinate phosphoric intermediate containing five‐member ring from α‐COOH was 35 kJ/mol lower than that of the six‐member one from β‐COOH. This result was in agreement with that predicted by HF/6‐31G** and B3LYP/6‐31G** calculations. Theoretical three‐dimensional potential energy surface for the intermediates predicted that the transition states 4 and 5 involving α‐COOH or β‐COOH group had energy barriers of ΔE=175.8 kJ?mol?1 and 210.4 kJ?mol?1, respectively. So the α‐COOH could be differentiated from β‐COOH intramolecularly in aspartic acids by N‐phosphorylation. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 83: 41–51, 2001  相似文献   

18.
Two isomeric pyridine‐substituted norbornenedicarboximide derivatives, namely N‐(pyridin‐2‐yl)‐exo‐norbornene‐5,6‐dicarboximide, (I), and N‐(pyridin‐3‐yl)‐exo‐norbornene‐5,6‐dicarboximide, (II), both C14H12N2O4, have been crystallized and their structures unequivocally determined by single‐crystal X‐ray diffraction. The molecules consist of norbornene moieties fused to a dicarboximide ring substituted at the N atom by either pyridin‐2‐yl or pyridin‐3‐yl in an anti configuration with respect to the double bond, thus affording exo isomers. In both compounds, the asymmetric unit consists of two independent molecules (Z′ = 2). In compound (I), the pyridine rings of the two independent molecules adopt different conformations, i.e. syn and anti, with respect to the methylene bridge. The intermolecular contacts of (I) are dominated by C—H...O interactions. In contrast, in compound (II), the pyridine rings of both molecules have an anti conformation and the two independent molecules are linked by carbonyl–carbonyl interactions, as well as by C—H...O and C—H...N contacts.  相似文献   

19.
Xa He  H‐Yan Lu  Guo‐Sheng Liu 《中国化学》2001,19(12):1285-1288
In the presence of CuCl2, N‐(2′, 4′‐dienyl)‐2‐alkynamides can be converted to α‐alkylidene‐σ‐butyrolactams under the catalysis of palladium(II). In this reaction, CuCl2 is used to oxidize Pd(0) to regenerate Pd(II), or the carbon‐palladium bond is quenched by the oxidative cleavage reaction of CuCl2.  相似文献   

20.
The synthesis and structural characterization of two azirine rhodium(III ) complexes are described. The stabilization, N‐coordination and phenylgroup π‐stacking of the highly reactive and strained 3‐phenyl‐2H‐azirine by transition metal coordination is observed. The reaction of the dimeric complex [(η5‐C5Me5)RhCl2]2 with 3‐phenyl‐2H‐azirine (az) in CH2Cl2 at room temperature in a 1:2 molar ratio afforded the neutral mono‐azirine complex [(η5‐C5Me5)RhCl2(az)]. The subsequent reaction of [(η5‐C5Me5)RhCl2]2 with six equivalents of az and 4 equivalents of AgOTf yielded the cationic tris‐azirine complex [(η5‐C5Me5)Rh(az)3](OTf)2. After purification, all complexes have been fully characterized. The molecular structures of the novel rhodium(III ) complexes exhibit slightly distorted octahedral coordination geometries around the metal atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号