首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
富力文 《物理》1989,18(3):167-168
本文叙述了电子回旋共振微波等离子体化学气相沉积(ECRPCVD)的工作原理、特点及其应用.ECRPCV D由放电室、淀积室、微波系统、磁场线圈、气路与真空系统组成.处于放电室的等离子体在磁场中做回旋运动,使电子的回旋运动频率与微波频率相同;处于回旋共振条件下的电子有效地吸收微波功率而获得高的能量,从而产生高活性和高密度的等离子体.电离度大于10%,电子密度为1013cm3.ECRPCVD可在低的气体流量、衬底不加热的情况下高速淀积高质量薄膜.以该技术淀积的Si,N4,SiO2薄膜可分别与高温CVD的Si3N4高温热氧化的SiO2相比拟.ECRPCVD淀积a-Si:H淀积速率为通常CVD的20倍,而性能与射频CVD淀积的a-Si:H相当.ECRPCVD 已成功用于淀积多种薄膜。  相似文献   

2.
电子回旋共振等离子体技术   总被引:2,自引:0,他引:2  
丁振峰  钨钦崇 《物理》1996,25(10):608-613,635
微波电子回旋共振是一种先进的低温等离子体技术,它具有优良的综合指标,提高了微电子,光电子集成电路制造工艺等应用领域中的低温等离子体加工水平,文章介绍了电子回旋共振等离子体产生原理,特点及重要的实验研究结果。  相似文献   

3.
电子回旋共振微波等离子体技术在薄膜制备技术、材料的表面处理、离子源和等离子体刻蚀等方面得到了广泛的应用,取得了长足的进展。这些特点在ICF实验制靶过程中有重要应用,如调制靶等,而且加工精度高,能满足ICF制靶的要求。基于在未来的ICF实验中对各种有机膜制备、各种调制靶的制备需求,开展了电子回旋共振微波等离子体技术在薄膜制备和等离子体刻蚀方面的预研工作。  相似文献   

4.
电子回旋共振(ECR)等离子体的研究和应用   总被引:8,自引:0,他引:8  
近年来,在低气压、低温等离子体研究和应用中的一个重要发展是微波电子回旋共振放电。由于它是一种无极放电,能够在低气压下产生高密度、高电离度、大体积均匀的等离子体,所以在等离子体物理研究,表面处理和薄膜制备等应用中,成为一个十分引人注目的新领域。本文综述了ECR放电的基本物理过程和实验研究概况,介绍了ECR等离子体在表面处理、镀膜和离子源等方面应用的最新结果。  相似文献   

5.
电子回旋共振微波等离子体技术及应用   总被引:1,自引:0,他引:1  
 电子回旋共振微波等离子体技术(ECR-MP)在表面处理、等离子体刻蚀和薄膜制备,尤其是高品质的激光惯性约束聚变薄膜靶的制备中有着重要的应用。综述了ECR-MP的基本原理、反应装置、实验研究、理论研究和应用情况的发展现状,同时分析了其今后可能的发展趋势。  相似文献   

6.
电子回旋共振微波等离子体技术(ECR-MP)在表面处理、等离子体刻蚀和薄膜制备,尤其是高品质的激光惯性约束聚变薄膜靶的制备中有着重要的应用。综述了ECR-MP的基本原理、反应装置、实验研究、理论研究和应用情况的发展现状,同时分析了其今后可能的发展趋势。  相似文献   

7.
 低气压、低温放电方面的一个重要的最新进展是电子回旋共振(ECR)放电。这种技术首先是在核聚变研究中发展起来的。最初,它被用于磁镜实验装置产生和加热等离子体,后来,又被发展成为托卡马克、串级磁镜等聚变装置实验中进行等离子体加热的主要手段之一,即电子回旋共振加热(ECRH)。目前,这一高技术已被移植到各种低温等离子体应用之中,显示了蓬勃的生命力。电子回旋共振微波等离子体是指:当输入的微波频率ω等于电子回旋共振频率ωce时,微波能量可以共振耦合给电子,获得能量的电子电离中性气体,产生放电。电子回旋频率为ωce=eB/m,e和m为电子电荷及其质量,B是磁场强度。  相似文献   

8.
采用自洽微波功率吸收的二维混合模型,对电子回旋共振等离子体源中的各种物理参量(电离速率、等离子体密度、位势、电子温度)进行数值模拟.结果表明:等离子体参数随运行条件(中性气压和微波功率)变化呈现出区域特征、饱和现象和振荡行为等非线性现象关键词:  相似文献   

9.
为了刻蚀出图形完整、侧壁陡直、失真度小的α:CH薄膜微器件,研究了有铝和无铝掩膜、气体流量比、工作气压对刻蚀速率的影响,并对纯氧等离子体刻蚀稳定性进行了研究。研究结果表明:在相同条件下,刻蚀速率随刻蚀时间变化不大;a:CH薄膜上有铝和无铝掩膜时,刻蚀速率相同;流量一定时,刻蚀速率随氩气和氧气体积比的增大而降低,当用纯氩气时,几乎没刻蚀作用;刻蚀速率随工作气压的增大而降低。实验中,得到最佳刻蚀条件是:纯氧气,流量4 mL·s-1,工作气压9.9×10-2 Pa,微波源电流80 mA,偏压-90 V。  相似文献   

10.
电子回旋共振微波等离子体刻蚀α:CH薄膜的工艺   总被引:1,自引:1,他引:0  
 为了刻蚀出图形完整、侧壁陡直、失真度小的α:CH薄膜微器件,研究了有铝和无铝掩膜、气体流量比、工作气压对刻蚀速率的影响,并对纯氧等离子体刻蚀稳定性进行了研究。研究结果表明:在相同条件下,刻蚀速率随刻蚀时间变化不大;a:CH薄膜上有铝和无铝掩膜时,刻蚀速率相同;流量一定时,刻蚀速率随氩气和氧气体积比的增大而降低,当用纯氩气时,几乎没刻蚀作用;刻蚀速率随工作气压的增大而降低。实验中,得到最佳刻蚀条件是:纯氧气,流量4 mL·s-1,工作气压9.9×10-2 Pa,微波源电流80 mA,偏压-90 V。  相似文献   

11.
建立了电子回旋共振(ECR)微波放电等离子体中离子输运过程的蒙特卡罗模型,考虑了离子与中性原子的电荷交换碰撞和弹性碰撞,以及精确依赖于离子能量的电荷交换和动量转移截面,模拟了源于氩气ECR微波放电的氩离子向衬底输运的过程,得到与实验报道相符的模拟结果。  相似文献   

12.
In this Letter we research the space charge limiting current value at which the oscillating virtual cathode is formed in the relativistic electron beam as a function of the external magnetic field guiding the beam electrons. It is shown that the space charge limiting (critical) current decreases with growth of the external magnetic field, and that there is an optimal induction value of the magnetic field at which the critical current for the onset of virtual cathode oscillations in the electron beam is minimum. For the strong external magnetic field the space charge limiting current corresponds to the analytical relation derived under the assumption that the motion of the electron beam is one-dimensional [D.J. Sullivan, J.E. Walsh, E. Coutsias, in: V.L. Granatstein, I. Alexeff (Eds.), Virtual Cathode Oscillator (Vircator) Theory, in: High Power Microwave Sources, vol. 13, Artech House Microwave Library, 1987, Chapter 13]. Such behavior is explained by the characteristic features of the dynamics of electron space charge in the longitudinal and radial directions in the drift space at the different external magnetic fields.  相似文献   

13.
衬底偏压对ECR等离子体鞘层和离子行为的影响   总被引:1,自引:0,他引:1  
介绍了电子回旋共振微波放电等离子体中离子向衬底输运的蒙特卡罗模型,该模型考虑了精确依赖于离子能量的电荷交换和动量转移截面以及中性区与鞘层的衔接。  相似文献   

14.
HL-2Aװ��2MW���ӻ����������ϵͳ����   总被引:5,自引:2,他引:3  
HL-2A装置电子回旋共振加热系统的主要指标是2MW/1s/68GHz,系统由4个单元组成,每个单元包括一只回旋管,微波传输系统,控制保护测量和冷却等子系统。通过对ECRH系统和回旋管的调试,每只管子微波输出功率500kW,脉冲宽度1s,四管并联运行时总输出功率达到1.63MW,系统使用效率高于80%。  相似文献   

15.
In this Letter the results of theoretical investigations of the chaotic microwave oscillator based on the electron beam with a virtual cathode are presented. Nonlinear non-stationary processes in these electron systems are studied by means of numerical analysis of 2.5D model. It was discovered that the non-uniform external magnetic field value controls the dynamical regime of oscillations in the virtual cathode oscillator. The processes of the chaotization of output microwave radiation are described and interpreted from the point of view of the formation and interaction of electron structures (bunches) in the electron beams. The numerical results have shown that the investigated electron system with virtual cathode could be considered as a promising controlled source of wideband chaotic oscillations in the microwave range.  相似文献   

16.
There are higher technical requirements for protecting layer of magnetic heads and disks used in future high-density storage fields. In this paper, ultra-thin (2 nm thickness) tetrahedral amorphous carbon (ta-C) films were firstly prepared by filtered cathodic vacuum arc (FCVA) method, then a series of nitriding treatments were performed with nitrogen plasma generated using electron cyclotron resonance (ECR) microwave source. Here it highlighted the influence of nitrogen flow and applied substrate bias voltage on the structural characteristics of ta-C films during the plasma nitriding process. The chemical compositions, element depth distribution profiles, physical structures and bonding configurations of plasma-nitrided ta-C films were investigated by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and UV-vis Raman spectroscopy. The experimental results show that the carbon nitride compounds (CNx) are formed in nitrogenated ta-C films in which the N content and its depth distribution depends on bias voltage to large extent rather than N2 flow. The N content of nitrogenated ta-C films can reach 16 at.% for a substrate bias of −300 V and a N2 flow of 90 sccm. With increasing nitrogen content, there is less G peak dispersion and more ordering of structure. Furthermore, appropriate nitriding treatment (substrate bias: −100 V, N2 flow: 150 sccm) can greatly increase the fraction of sp3 and sp3C-N bonds, but the values begin to fall when the N content is above 9.8 at.%. All these indicate that suitable ECR-assisted microwave plasma nitriding is a potential modification method to obtain ultra-thin ta-C films with higher sp3 and sp3C-N fractions for high-density magnetic storage applications.  相似文献   

17.
介绍了一台2.45GHz电子回旋共振(ECR)单电荷离子源的磁场场形,以及它和总束流的关系.并且比较了国际上现有的几台同类型离子源的磁场场形.由此得出了关于2.45GHzECR离子源磁场场形的一些结论.  相似文献   

18.
用于半导体加工的腔耦合-磁多极型ECR源的研究   总被引:3,自引:0,他引:3  
本实验室研制出一台谐振腔耦合一多极场位形的电子回旋共振(ECR)微波等离子体源(MEP)。采用朗谬探针和离子能量分析器,测量了MEP中Ar等离子体的放电特性。实验结果表明.MEP能在很宽的运行参数范围,高效率地产生具有较高密度、较低离子温度和空间电位的大面积均匀等离子体,特别适合于半导体加工应用研究。  相似文献   

19.
    
Both theoretical and numerical electromagnetic analyses about the modes inside the cylindrical cavity of superconducting electron cyclotron resonance ion source (SERSE) have been performed. Modes close to 14, 18 and 28 GHz frequencies, usually employed in SERSE operating conditions, have been calculated in vacuum and when the chamber is filled with a uniform non-collisional plasma at different electron densities. To consider the holes present in the chamber flanges, a numerical approach has been used, by means of the HFSSTM electromagnetic simulator, for the first mode in the cavity. Modes in a plasma-filled cylindrical cavity with holed bases have full width half maximum bandwidths larger with regard to the closed cavity in vacuum, and it leads to an increased mode frequency overlap. A monochromatic electromagnetic wave feeding this cavity can, in principle, excite different modes. Further investigations about the coupling between the SERSE cavity and its feeding waveguides have to be performed.  相似文献   

20.
研制成功了一台新的高电荷态ECR离子源,该离子源主要为原子物理实验提供各种高电荷态离子束流,是基于中国科学院近代物理研究所14.5GHz高电荷态ECR离子源设计建成的,同时在该离子源中应用多种有利于提高束流强度的技术,设计时考虑到采用双频加热,试图通过试验双频加热模式来提高高电荷态离子的产额,并设计建造了一套束流聚焦分析系统,以提高电荷态分辨率和束流传输效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号