首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new synthetic method for the preparation of pitavastatin is described. The approach circumvents various synthetic problems associated with the buildup of the 3,5‐dihydroxy‐C7 acid side chain of HMG‐CoA reductase inhibitors (statins). The use of the C6‐amide derivative 5 instead of ester derivatives in the coupling reaction with carboxaldehyde 8 (Scheme 3) prevents undesired side reactions, such as eliminations and retro‐aldol reactions. The method provides synthetic statins, such as pitavastatin, in >99% ee and exceptionally high overall yield. The enantiomerically pure starting material, (3S)‐3‐{[(tert‐butyl)dimethylsilyl]oxy}‐5‐oxo‐5‐{[(1S)‐1‐phenylethyl]amino}pentanoic acid ( 3c ), is prepared by an improved procedure from 3‐{[(tert‐butyl)dimethylsilyl]oxy}glutaric anhydride ( 1 ) and (1S)‐1‐phenylethylamine ( 2c ; Scheme 1).  相似文献   

2.
A stereoselective synthesis of (5S,6S)‐6‐[(2S,5S,7R,8E,10E)‐5‐(benzyloxy)‐7‐{[(tert‐butyl)dimethylsilyl]oxy}‐11‐phenylundeca‐8,10‐dien‐2‐yl]‐5‐ethyl‐5,6‐dihydro‐2H‐pyran‐2‐one (=(+)‐9‐O‐benzyl‐11‐O‐[(tert‐butyl)dimethylsilyl]bitungolide F) is reported. The strategy involves Gilman reaction, olefin cross‐metathesis, and Horner? Wadsworth? Emmons olefination as key steps.  相似文献   

3.
Diels-Alder Reactions of 2,4-Bis{[(tert-Butyl)dimethylsilyl]oxy}-3-aza--1,3-pentadien with Heterodienophiles The 2,4-bis{[(tert-butyl)dimethylsilyl]oxy}-3-aza-1,3-pentadien( 2 ) reacts via the Diels-Alder adducts 3 , 6a-c , and 8a , b , which cannot be isolated, giving the triazines 4 , 7a-c , and the oxadiazines 9a , b . The hydrolysis of 4 in MeOH affords the N-acetyl-acetamid derivative 5 . The formula of 9a is proven by an X-ray-structure analysis.  相似文献   

4.
The Diels-Alder adduct (±)-5 of furan to 1-cyanovinyl acetate was converted to (1RS,2RS,6RS,7SR,8SR,10RS)-10-{[(tert-butyl)dimethylsilyl]-oxy}-4-ethoxy (1) and -4-phenyl-3,9,11-trioxa-5-azatetracyclo[5.3.1.02,6.08,10]-undec-4-ene (2). These compounds reacted with TiCl4 to afford stable (1RS,2RS,6RS,7SR,8SR,9SR)-9-{[(tert-butyl)dimethylsilyl]oxy}-9-chloro-4-ethoxy-3,10-dioxa-5-azatricyclo[5.2.1.02,6]decan-8-ol (3) and (1RS,2RS,6RS,7SR,8SR,9SR)-9-{[(tert-butyl)dimethylsilyl]oxy}-9-chloro-4-phenyl-3,10-dioxa-5-azatricyclo[5.2.1.02,6]decan-8-ol (4), respectively.  相似文献   

5.
A novel miktofunctional initiator ( 1 ), 2‐hydroxyethyl 3‐[(2‐bromopropanoyl)oxy]‐2‐{[(2‐bromopropanoyl)oxy]methyl}‐2‐methyl‐propanoate, possessing one initiating site for ring‐opening polymerization (ROP) and two initiating sites for atom transfer radical polymerization (ATRP), was synthesized in a three‐step reaction sequence. This initiator was first used in the ROP of ?‐caprolactone, and this led to a corresponding polymer with secondary bromide end groups. The obtained poly(?‐caprolactone) (PCL) was then used as a macroinitiator for the ATRP of tert‐butyl acrylate or methyl methacrylate, and this resulted in AB2‐type PCL–[poly(tert‐butyl acrylate)]2 or PCL–[poly(methyl methacrylate)]2 miktoarm star polymers with controlled molecular weights and low polydispersities (weight‐average molecular weight/number‐average molecular weight < 1.23) via the ROP–ATRP sequence. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2313–2320, 2004  相似文献   

6.
In this work the synthesis of poly(butyl acrylate)‐b‐poly(2‐{[(D ‐glucosamin‐2‐N‐yl)carbonyl]oxy}ethyl methacrylate) (PBA‐b‐PHEMAGl) diblock glycopolymer and poly(2‐{[(D ‐glucosamin‐2‐N‐yl)carbonyl]oxy}ethyl methacrylate)‐b‐poly(butyl acrylate)‐b‐poly(2‐{[(D ‐glucosamin‐2‐N‐yl)carbonyl]oxy}ethyl methacrylate) (PHEMAGl‐b‐PBA‐b‐PHEMAGl) was performed via atom transfer radical polymerization. Monofunctional and difunctional poly(butyl acrylate) macroinitiators were used to synthesize the well‐defined diblock and triblock glycopolymers by chain extension reaction with the glycomonomer HEMAGl. The self‐assembly of these glycopolymers in aqueous solution was studied by dynamic light scattering and transmission electron microcopy, showing the coexistence of spherical micelles and polymeric vesicles. In addition, the biomolecular recognition capacity of these micelles and vesicles, containing glucose moieties in their coronas, was investigated using the lectin Concanavalin A, Canavalia Ensiformis, which specifically interacts with glucose groups. The binding capacity of Concanavalin A with glycopolymer is influenced by the copolymer composition, increasing with the length of HEMAGl glycopolymer segment in the block copolymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
Enantiomerically pure (+)‐(1S,4S,5S,6S)‐6‐endo‐(benzyloxy)‐5‐exo‐{[(tert‐butyl)dimethylsilyl]oxy}‐7‐oxabicyclo[2.2.1]heptan‐2‐one ((+)‐ 5 ) and its enantiomer (−)‐ 5 , obtained readily from the Diels‐Alder addition of furan to 1‐cyanovinyl acetate, can be converted with high stereoselectivity into 8‐oxabicyclo[3.2.1]octane‐2,3,4,6,7‐pentol derivatives (see 23 – 28 in Scheme 2). A precursor of them, (1R,2S,4R,5S,6S,7R,8R)‐7‐endo‐(benzyloxy)‐8‐exo‐hydroxy‐3,9‐dioxatricyclo[4.2.1.02,4]non‐5‐endo‐yl benzoate ((−)‐ 19 ), is transformed into (1R,2R,5S, 6S,7R,8S)‐6‐exo,8‐endo‐bis(acetyloxy)‐2‐endo‐(benzyloxy)‐4‐oxo‐3,9‐dioxabicyclo[3.3.1]non‐7‐endo‐yl benzoate ((−)‐ 43 ) (see Scheme 5). The latter is the precursor of several protected 2,6‐anhydrohepturonic acid derivatives such as the diethyl dithioacetal (−)‐ 57 of methyl 3,5‐di‐O‐acetyl‐2,6‐anhydro‐4‐O‐benzoyl‐D ‐glycero‐D ‐galacto‐hepturonate (see Schemes 7 and 8). Hydrolysis of (−)‐ 57 provides methyl 3,5‐di‐O‐acetyl‐2,6‐anhydro‐4‐O‐benzoyl‐D ‐glycero‐D ‐galacto‐hepturonate 48 that undergoes highly diastereoselective Nozaki‐Oshima condensation with the aluminium enolate resulting from the conjugate addition of Me2AlSPh to (1S,5S,6S,7S)‐7‐endo‐(benzyloxy)‐6‐exo‐{[(tert‐butyl)dimethylsilyl]oxy}‐8‐oxabicyclo[3.2.1]oct‐3‐en‐2‐one ((−)‐ 13 ) derived from (+)‐ 5 (Scheme 12). This generates a β‐C‐mannopyranoside, i.e., methyl (7S)‐3,5‐di‐O‐acetyl‐2,6‐anhydro‐4‐O‐benzoyl‐7‐C‐[(1R,2S,3R,4S,5R,6S,7R)‐6‐endo‐(benzyloxy)‐7‐exo‐{[(tert‐butyl)dimethylsilyl]oxy}‐4‐endo‐hydroxy‐2‐exo‐(phenylthio)‐8‐oxabicyclo[3.2.1]oct‐3‐endo‐yl]‐L ‐glycero‐D ‐manno‐heptonate ((−)‐ 70 ; see Scheme 12), that is converted into the diethyl dithioacetal (−)‐ 75 of methyl 3‐O‐acetyl‐2,6‐anhydro‐4,5‐dideoxy‐4‐C‐{[methyl (7S)‐3,5,7‐tri‐O‐acetyl‐2,6‐anhydro‐4‐O‐benzoyl‐L ‐glycero‐D ‐manno‐heptonate]‐7‐C‐yl}‐5‐C‐(phenylsulfonyl)‐L ‐glycero‐D ‐galacto‐hepturonate ( 76 ; see Scheme 13). Repeating the Nozaki‐Oshima condensation to enone (−)‐ 13 and the aldehyde resulting from hydrolysis of (−)‐ 75 , a (1→3)‐C,C‐linked trisaccharide precursor (−)‐ 77 is obtained.  相似文献   

8.
The first total synthesis of the α‐oxo amide‐based natural product, N‐(3‐guanidinopropyl)‐2‐(4‐hydroxyphenyl)‐2‐oxoacetamide ( 3 ), isolated from aqueous extracts of hydroid Campanularia sp., has been achieved. The α‐oxo amide 12 , prepared via the oxidative amidation of 1‐[4‐(benzyloxy)phenyl]‐2,2‐dibromoethanone ( 9a ) with 4‐{[(tert‐butyl)(dimethyl)silyl]oxy}butan‐1‐amine ( 10a ), has been used as the key intermediate in the total synthesis of 3 as HBr salt. On the way, an expeditious total synthesis of polyandrocarpamide C ( 2c ), isolated from marine ascidian Polyandrocarpa sp., was carried out in four steps.  相似文献   

9.
Three N‐Boc‐protected amino acids substituted with a mesityl (=2,4,6‐trimethylphenyl) group were synthesized in enantiomerically pure form, either by asymmetric epoxidation or by aminohydroxylation as the source of chirality. The 3‐mesityloxirane‐2‐methanol 7 , easily available in high enantiomer purity by Sharpless epoxidation, was converted into 3‐{[(tert‐butoxy)carbonyl]amino}‐3‐mesitylpropane‐1,2‐diol 9 by a regio‐ and stereoselective ring opening with an ammonia equivalent (sodium azide or benzhydrylamine), followed by hydrogenation and in situ treatment with (Boc)2O (Boc=[(tert‐butoxy)carbonyl]) (Scheme 3). Oxidative cleavage of the diol fragment in 9 afforded N‐[(tert‐butoxy)carbonyl]‐α‐mesitylglycine 1 of >99% ee. This amino acid was also prepared in enantiomerically pure form starting from 2,4,6‐trimethylstyrene ( 11 ) by a regioselective Sharpless asymmetric aminohydroxylation, followed by a 2,2,6,6‐tetramethylpiperidin‐1‐yloxyl (TEMPO)‐catalyzed oxidation (Scheme 4). On the other hand, 1‐[(tert‐butoxy)carbonyl]‐2‐{{[(tert‐butyl)dimethylsilyl]oxy}methyl}‐3‐mesitylaziridine 14 was prepared from 9 by a sequence involving selective protection of the primary alcohol (as a silyl ether), activation of the secondary alcohol as a mesylate, and base‐induced (NaH) cyclization (Scheme 5). The reductive cleavage of the aziridine ring (H2, Pd/C), followed by alcohol deprotection (Bu4NF/THF) and oxidation (pyridinium dichromate (PDC)/DMF or (TEMPO)/NaClO) provided, in high yield and enantiomeric purity, N‐[(tert‐butoxy)carbonyl]‐β‐mesitylalanine 2 . Alternatively, the regioselective ring opening of the aziridine ring of 14 with lithium dimethylcuprate, followed by silyl‐ether cleavage and oxidation lead to N‐[(tert‐butoxy)carbonyl]‐β‐mesityl‐β‐methylalanine 3 . A conformational study of the methyl esters of the N‐Boc‐protected amino acids 1 and 3 carried out by variable‐temperature 1H‐NMR and semi‐empirical (AM1) calculations shows the strong rotational restriction imposed by the mesityl group.  相似文献   

10.
As part of our studies on the structure of yeast tRNAfMet, we investigated the incorporation of N‐{[9‐(β‐D ‐ribofuranosyl)‐9H‐purin‐6‐yl]carbamoyl}‐L ‐threonine (t6A) in the loop of a RNA 17‐mer hairpin. The carboxylic function of the L ‐threonine moiety of t6A was protected with a 2‐(4‐nitrophenyl)ethyl group, and a (tert‐butyl)dimethylsilyl group was used for the protection of its secondary OH group. The 2′‐OH function of the standard ribonucleotide building blocks was protected with a [(triisopropylsilyl)oxy]methyl group. Removal of the base‐labile protecting groups of the final RNA with 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) and then with MeNH2 was done under carefully controlled conditions to prevent hydrolysis of the carbamate function, leading to loss of the L ‐threonine moiety.  相似文献   

11.
An amine‐elimination reaction was used to obtain the title compound, i.e. (Ntert‐butyl‐N‐{[(1,2,3,3a,7a‐η)‐4,5,6,7‐tetra­hydro‐4,7‐methano‐1H‐inden‐2‐yl]­di­methyl­silyl}amido‐κN)bis(N‐methyl­methanaminato‐κN)­zirconium(IV) or [isodiCpSiMe2N‐tert‐butyl]Zr(NMe2)2 (Cp is cyclo­penta­dienyl), [Zr(C16H25NSi)(C2H6N)2], in very good yield. Treatment of isodiCpHSiMe2NH‐tert‐butyl with Zr(NMe2)4 leads to the formation of a yellow solid that can be purified by sublimation. The single‐crystal structure of the product shows the exo complexation of the isodi­cyclo­penta­dienyl ligand to the Zr atom. The Cp portion of this ligand is bonded to the Zr atom in a η5 manner, with a Zr—Cg (Cg is the ring centroid) distance of 2.2352 (10) Å. The isodiCpSiMe2N‐tert‐butyl ligand has a constrained geometry, which is exhibited by the small angle of 95.55 (10)° for N—Si—CCp.  相似文献   

12.
The first results of a study aiming at an efficient preparation of a large variety of 2′‐O‐[(triisopropylsilyl)oxy]methyl(= tom)‐protected ribonucleoside phosphoramidite building blocks containing modified nucleobases are reported. All of the here presented nucleosides have already been incorporated into RNA sequences by several other groups, employing 2′‐O‐tbdms‐ or 2′‐O‐tom‐protected phosphoramidite building blocks (tbdms = (tert‐butyl)dimethylsilyl). We now optimized existing reactions, developed some new and shorter synthetic strategies, and sometimes introduced other nucleobase‐protecting groups. The 2′‐O‐tom, 5′‐O‐(dimethoxytrityl)‐protected ribonucleosides N2‐acetylisocytidine 5 , O2‐(diphenylcarbamoyl)‐N6‐isobutyrylisoguanosine 8 , N6‐isobutyryl‐N2‐(methoxyacetyl)purine‐2,6‐diamine ribonucleoside (= N8‐isobutyryl‐2‐[(methoxyacetyl)amino]adenosine) 11 , 5‐methyluridine 13 , and 5,6‐dihydrouridine 15 were prepared by first introducing the nucleobase protecting groups and the dimethoxytrityl group, respectively, followed by the 2′‐O‐tom group (Scheme 1). The other presented 2′‐O‐tom, 5′‐O‐(dimethoxytrityl)‐protected ribonucleosides inosine 17 , 1‐methylinosine 18 , N6‐isopent‐2‐enyladenosine 21 , N6‐methyladenosine 22 , N6,N6‐dimethyladenosine 23 , 1‐methylguanosine 25 , N2‐methylguanosine 27 , N2,N2‐dimethylguanosine 29 , N6‐(chloroacetyl)‐1‐methyladenosine 32 , N6‐{{{(1S,2R)‐2‐{[(tert‐butyl)dimethylsilyl]oxy}‐1‐{[2‐(4‐nitrophenyl)ethoxy]carbonyl}propyl}amino}carbonyl}}adenosine 34 (derived from L ‐threonine) and N4‐acetyl‐5‐methylcytidine 36 were prepared by nucleobase transformation reactions from standard, already 2′‐O‐tom‐protected ribonucleosides (Schemes 2–4). Finally, all these nucleosides were transformed into the corresponding phosphoramidites 37 – 52 (Scheme 5), which are fully compatible with the assembly and deprotection conditions for standard RNA synthesis based on 2′‐O‐tom‐protected monomeric building blocks.  相似文献   

13.
With a variation in reaction conditions, 1, 4‐bis (2‐(2‐chloroethoxy)ethoxy)‐calix[6]arene (3) and l,3,5‐tris(2‐(2‐chloroethoxy) ethoxy)‐calix [6] arene (4) or 4 and 4‐chloroethoxyethoxy‐calix[6]crown‐3 (5) were selectively synthesized from p‐tert‐butyl‐calix [6] arene and 2‐(2‐chloroethoxy)ethyltosylate. l,3–4,6‐p‐tert‐butylcalix[6]‐bis‐crown‐3 (6) with (u,u,u,d,d,d) conformation and 1,3–4,5‐p‐tert‐butylcalix[6]‐biscrown‐3 (7) with self‐anchored (u,u, u, u, u, d) conformation were synthesized through an intramolecularly ring‐closing condensation of 1, 4‐bis (2‐(2‐chloroethoxy)ethoxy)‐p‐tert‐butyl‐calix[6]arene (3) in 25% and 15% yield, respectively. Using 5 instead of 3, only 7 was obtained in 65% high yield. 6 and 7 show different complexation properties toward alkali metal and ammonium ions.  相似文献   

14.
Herein, two asymmetric chiral bent‐core molecules, 3‐[(4‐{[4‐(heptyloxy)benzoyl]oxy}benzoyl)oxy]‐phenyl‐4‐[(4‐{[(1R)‐1‐methylheptyl]oxy}benzoyl)oxy] benzoate (BC7R) and 3‐[(4‐{[4‐(heptyloxy)benzoyl]oxy}benzoyl)oxy]‐phenyl‐4‐[(4‐{[(1S)‐1‐methylheptyl]oxy}benzoyl)oxy] benzoate (BC7S), were synthesized to demonstrate control of the helicity of their self‐assembled hierarchical superstructures. Mirror‐imaged CD spectra showed a split‐type Cotton effect after the formation of self‐assembled aggregates of BC7R and BC7S, thereby suggesting the formation of intermolecular exciton couplets with opposite optical activities. Both twisted and helical ribbons with preferential helicity that corresponded to the twisting character of the intermolecular exciton couplet were found in the aggregates. The formation of helical ribbons was attributed to the merging of twisted ribbons through an increase in width to improve morphological stability. As a result, control of the helicity of hierarchical superstructures from the self‐assembly of bent‐core molecules could be achieved by taking advantage of the transfer of chiral information from the molecular level onto the hierarchical scale.  相似文献   

15.
The controlled nitroxide‐mediated homopolymerization of 9‐(4‐vinylbenzyl)‐9H‐carbazole (VBK) and the copolymerization of methyl methacrylate (MMA) with varying amounts of VBK were accomplished by using 10 mol % {tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino} nitroxide relative to 2‐({tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino}oxy)‐2‐methylpropionic acid (BlocBuilder?) in dimethylformamide at temperatures from 80 to 125 °C. As little as 1 mol % of VBK in the feed was required to obtain a controlled copolymerization of an MMA/VBK mixture, resulting in a linear increase in molecular weight versus conversion with a narrow molecular weight distribution (Mw /Mn ≈ 1.3). Preferential incorporation of VBK into the copolymer was indicated by the MMA/VBK reactivity ratios determined: rVBK = 2.7 ± 1.5 and rMMA = 0.24 ± 0.14. The copolymers were found significantly “living” by performing subsequent chain extensions with a fresh batch of VBK and by 31P NMR spectroscopy analysis. VBK was found to be an effective controlling comonomer for NMP of MMA, and such low levels of VBK comonomer ensured transparency in the final copolymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
The reaction of 3,4‐di‐tert‐butyl‐thio‐phene 1‐oxide ( 8 ) with tetrachlorocyclopropene provided 6,7‐di‐tert‐butyl‐2,3,4,4‐tetrachloro‐8‐thia‐bicylo[3.2.1]octa‐2,6‐diene 8‐oxide ( 10 ), which was oxidized to the corresponding 8,8‐dioxide 16 by m‐chloroperbenzoic acid. The thermolysis of 16 in refluxing chlorobenzene, xylene, or octane gave 5‐tert‐ butyl‐1,2‐dichloro‐3‐[(1,1‐dich‐loro‐2,2‐dimethyl)‐pro‐ pyl]‐benzene ( 18 ) with extrusion of SO2 and 2‐tert‐butyl‐4,5,6‐trichloro‐9,9‐dimethylbicyclo[5.2.0]nona‐1,3,5‐triene ( 19 ) with extrusion of SO2 and HCl in 73–78% combined yields. On the other hand, the thermolysis of 16 in the presence of triethylamine gave 19 as the sole product in 98% yield. A mechanism that involves the initial formation of 4,5‐di‐tert‐butyl‐1,2,7,7‐tetrachlorocycloheptatriene ( 17 ) is proposed to ex‐ plain the observed products. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:132–222, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20079  相似文献   

17.
The synthesis and structures of three isoxazole‐containing Schiff bases are reported, namely, (E)‐2‐{[(isoxazol‐3‐yl)imino]methyl}phenol, C10H8N2O2, (E)‐2‐{[(5‐methylisoxazol‐3‐yl)imino]methyl}phenol, C11H10N2O2, and (E)‐2,4‐di‐tert‐butyl‐6‐{[(isoxazol‐3‐yl)imino]methyl}phenol, C18H24N2O2. All three structures contain an intramolecular O—H…N hydrogen bond, alongside weaker intermolecular C—H…N and C—H…O contacts. The C—O(H) and imine C=N bond lengths were consistent with structures existing in the enol rather than the keto form. Despite having dihedral angles <25°, none of the compounds were observed to be strongly thermochromic, unlike their anil counterparts; however, all three compounds showed a visible colour change upon irradiation with UV light.  相似文献   

18.
Single crystals of two liquid crystal compounds, 5‐{[4′‐(((pentyl)oxy)‐4‐biphenylyl)carbonyl]oxy}‐1‐pentyne (A3EO5) and 5‐{[(4′‐nonyloxy‐4‐biphenylyl)carbonyl]oxy}‐1‐pentyne (A3EO9), have been prepared by solution growth technique. The morphologies and structures of A3EO5 and A3EO9 crystals were investigated by wide angle X‐ray diffraction (WXRD), atom force microscope (AFM) and transmission electron microscope (TEM). In contrast to the same series of compounds which have a longer alkyl tail, 5‐{[(4′‐heptoxy‐4‐biphenylyl)carbonyl]oxy}‐1‐pentyne (A3EO7), 5‐{[(4′‐heptoxy‐4‐biphenylyl)oxy]carbonyl}‐1‐pentyne (A3E′O7) and A3EO9, A3EO5 shows strikingly different crystalline behavior. The former three compounds have only one crystal form, whereas A3EO5 exhibits polymorphism. Specifically, A3EO5 crystals grown from toluene solution show two crystal forms. The first one is crystal I which adopts a monoclinic P112/m space group with unit cell parameters of a?5.79 Å, b?8.34 Å, c?43.92 Å, γ?96°, and the other one is crystal II which adopts a monoclinic P112 space group with unit cell parameters of a?5.55 Å, b?7.38 Å, c?31.75 Å, γ?94°. When using dioxane as the solvent to grow A3EO5 crystal, we can selectively obtain crystal I. A3EO5 melt‐grown crystals also have two crystal forms which derive from crystal I and crystal II, respectively. The different crystalline behavior of the compounds should correlate with their different electron dipole moment resulting from the different length of alkyl tail.  相似文献   

19.
Treatment of {[(benzyloxy)carbonyl]amino}‐substituted sulfones 1 with 2‐[(trimethylsilyl)oxy]furan ( 2 ) in the presence of InCl3 as a catalyst at room temperature produced the γ‐butenolactone derivatives 3 and 4 containing a protected amino group (Scheme 1). The products were formed in high yields (81–92%) within 3–10 h favoring the anti‐isomer 3 .  相似文献   

20.
Synthesis and Molekular Structures of N‐substituted Diethylgallium‐2‐pyridylmethylamides (2‐Pyridylmethyl)(tert‐butyldimethylsilyl)amine ( 1a ) and (2‐pyridylmethyl)‐di(tert‐butyl)silylamine ( 1b ) form with triethylgallane the corresponding red adducts 2a and 2b via an additional nitrogen‐gallium bond. These oily compounds decompose during distillation. Heating under reflux in toluene leads to the elimination of ethane and the formation of the red oils of [(2‐pyridylmethyl)(tert‐butyldimethylsilyl)amido]diethylgallane ( 3a ) and [(2‐pyridylmethyl)‐di(tert‐butyl)silylamido]diethylgallane ( 3b ). In order to investigate the thermal stability solvent‐free 3a is heated up to 400 °C. The elimination of ethane is observed again and the C‐C coupling product N, N′‐Bis(diethylgallyl)‐1, 2‐dipyridyl‐1, 2‐bis(tert‐butyldimethylsilyl)amido]ethan ( 4 ) is found in the residue. Substitution of the silyl substituents by another 2‐pyridylmethyl group and the reaction of this bis(2‐pyridylmethyl)amine with GaEt3 yield triethylgallane‐diethylgallium‐bis(2‐pyridylmethyl)amide ( 5 ). The metalation product adds immediately another equivalent of triethylgallane regardless of the stoichiometry. The reaction of GaEt3 with 2‐pyridylmethanol gives quantitatively colorless 2‐pyridylmethanolato diethylgallane ( 6 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号