首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A proton‐coupled electron transfer (PCET) process plays an important role in the initial step of lipoxygenases to produce lipid radicals which can be oxygenated by reaction with O2 to yield the hydroperoxides stereoselectively. The EPR spectroscopic detection of free lipid radicals and the oxygenated radicals (peroxyl radicals) together with the analysis of the EPR spectra has revealed the origin of the stereo‐ and regiochemistry of the reaction between O2 and linoleyl (= (2Z)‐10‐carboxy‐1‐[(1Z)‐hept‐1‐enyl]dec‐2‐enyl) radical in lipoxygenases. The direct determination of the absolute rates of H‐atom‐transfer reactions from a series of unsaturated fatty acids to the cumylperoxyl (= (1‐methyl‐1‐phenylethyl)dioxy) radical by use of time‐resolved EPR at low temperatures together with detailed kinetic investigations on both photoinduced and thermal electron‐transfer oxidation of unsaturated fatty acids provides the solid energetic basis for the postulated PCET process in lipoxygenases. A strong interaction between linoleic acid (= (9Z,12Z)‐octadeca‐9,12‐dienoic acid) and the reactive center of the lipoxygenases (FeIII? OH) is suggested to be involved to make a PCET process to occur efficiently, when an inner‐sphere electron transfer from linoleic acid to the FeIII state is strongly coupled with the proton transfer to the OH group.  相似文献   

2.
The polyhydroxylated ergostane‐type sterol 9 , its derivatives 10 – 15 , and the fatty acid esters 1 – 8 were isolated from a fungus strain which was collected from mangrove areas at Wenchang, Hainan Province, P. R. China, exhibited potent cytotoxic activity, and was identified as Aspergillus awamori. The structures of 1 – 15 were elucidated by spectroscopic and chemical methods. Among them, the six steryl esters 1 – 6 of fatty acids were new compounds, i.e., (3β,5α,6α,22E)‐ergosta‐7,22‐diene‐3,5,6‐triol 6‐palmitate ( 1 ), (3β,5α,6α,22E)‐ergosta‐7,22‐diene‐3,5,6‐triol 6‐stearate ( 2 ), (3β,5α,6α,22E)‐ergosta‐7,22‐diene‐3,5,6‐triol 6‐oleate ( 3 ), (3β,5α,6α,22E)‐ergosta‐7,22‐diene‐3,5,6‐triol 6‐linoleate ( 4 ), (3β,5α,6β,22E)‐ergosta‐7,22‐diene‐3,5,6‐triol 6‐palmitate ( 5 ), and (3β,5α,6β,22E)‐ergosta‐7,22‐diene‐3,5,6‐triol 6‐stearate ( 6 ). The related known fatty acids stearic acid (=octadecanoic acid) and palmitic acid (=octadecanoic acid) were also obtained. A speculative biogenetic relationship of the metabolites is proposed. The known polyhydroxylated sterols and derivatives showed cytotoxic activities, in agreement with earlier reports. The cytotoxic activities against B16 and SMMC‐7721 cell lines of the new steryl esters 1 – 6 by the MTT method were weak.  相似文献   

3.
(?)‐Hybridalactone ( 1 ) is a marine eicosanoid isolated from the red alga Laurencia hybrida. This natural product contains cyclopropane, cyclopentane, 13‐membered macrolactone and epoxide ring systems incorporating seven stereogenic centers. Moreover, this compound has an acid‐labile skipped Z,Z‐diene motif. In this paper, we report on the total synthesis of (?)‐hybridalactone ( 1 ). The unique eicosanoid (?)‐hybridalactone ( 1 ) was synthesized starting from optically active γ‐butyrolactone 2 in a linear sequence comprising 21 steps with an overall yield of 21.9 %. A key step in the synthesis of (?)‐hybridalactone ( 1 ) is the methyl phenylsulfonylacetate‐mediated one‐pot synthesis of the cis‐cyclopropane‐γ‐lactone derivative. This reaction provided an efficient and stereoselective access to cis‐cyclopropane‐γ‐lactone 12 . Further elaboration of the latter compounds through desulfonylation, epoxidation, oxidation, Wittig olefination and Shiina macrolactonization afforded (?)‐hybridalactone.  相似文献   

4.
Fourteen monohydroxy‐substituted polyunsaturated fatty acids, including two new compounds, (9Z,12S,13E,15Z)‐12‐hydroxyoctadeca‐9,13,15‐trienoic acid ( 10 ) and (9Z,12Z,14E,16R)‐16‐hydroxyoctadeca‐9,12,14‐trienoic acid ( 13 ), and 12 known ones, i.e., 1 – 9, 11, 12 , and 14 , were isolated from the whole plants of Swertia japonica Makino , and characterized as the corresponding methyl esters 1a – 14a . Their structures were elucidated by analysis of the corresponding spectroscopic data, and the absolute configurations of 10a and 13a were determined by the Mosher‐ester method. The CD spectra (Table) of compounds 1a – 14a are briefly discussed. This is the first report on the isolation of monohydroxy‐substituted polyunsaturated fatty acids from the Swertia genus in Gentianaceae.  相似文献   

5.
Various substituted homotaurines (=3‐aminopropane‐1‐sulfonic acids) 6 were readily synthesized in satisfactory to good yields via the Michael addition of thioacetic acid to alk‐2‐enamides 3 (→ 4 ), followed by LiAlH4 reduction (→ 5 ) and performic acid oxidation (Scheme 1). The configuration of ‘anti’‐disubstituted homotaurine ‘anti’‐ 6h was deduced from the 3‐(acetylthio)alkanamide (=S‐(3‐amino‐1,2‐dimethyl‐3‐oxopropyl) ethanethioate)‘anti’‐ 4h formed in the Michael addition, which was identified via the Karplus equation analysis, and confirmed by X‐ray diffraction analysis. The current route is an efficient method to synthesize diverse substituted homotaurines, including 1‐, 2‐, and N‐monosubstituted, as well as 1,2‐, 1,N‐, 2,N‐, and N,N‐disubstituted homotaurines (Table).  相似文献   

6.
To complete our panorama in structure–activity relationships (SARs) of sandalwood‐like alcohols derived from analogues of α‐campholenal (= (1R)‐2,2,3‐trimethylcyclopent‐3‐ene‐1‐acetaldehyde), we isomerized the epoxy‐isopropyl‐apopinene (?)‐ 2d to the corresponding unreported α‐campholenal analogue (+)‐ 4d (Scheme 1). Derived from the known 3‐demethyl‐α‐campholenal (+)‐ 4a , we prepared the saturated analogue (+)‐ 5a by hydrogenation, while the heterocyclic aldehyde (+)‐ 5b was obtained via a Bayer‐Villiger reaction from the known methyl ketone (+)‐ 6 . Oxidative hydroboration of the known α‐campholenal acetal (?)‐ 8b allowed, after subsequent oxidation of alcohol (+)‐ 9b to ketone (+)‐ 10 , and appropriate alkyl Grignard reaction, access to the 3,4‐disubstituted analogues (+)‐ 4f,g following dehydration and deprotection. (Scheme 2). Epoxidation of either (+)‐ 4b or its methyl ketone (+)‐ 4h , afforded stereoselectively the trans‐epoxy derivatives 11a,b , while the minor cis‐stereoisomer (+)‐ 12a was isolated by chromatography (trans/cis of the epoxy moiety relative to the C2 or C3 side chain). Alternatively, the corresponding trans‐epoxy alcohol or acetate 13a,b was obtained either by reduction/esterification from trans‐epoxy aldehyde (+)‐ 11a or by stereoselective epoxidation of the α‐campholenol (+)‐ 15a or of its acetate (?)‐ 15b , respectively. Their cis‐analogues were prepared starting from (+)‐ 12a . Either (+)‐ 4h or (?)‐ 11b , was submitted to a Bayer‐Villiger oxidation to afford acetate (?)‐ 16a . Since isomerizations of (?)‐ 16 lead preferentially to β‐campholene isomers, we followed a known procedure for the isomerization of (?)‐epoxyverbenone (?)‐ 2e to the norcampholenal analogue (+)‐ 19a . Reduction and subsequent protection afforded the silyl ether (?)‐ 19c , which was stereoselectively hydroborated under oxidative condition to afford the secondary alcohol (+)‐ 20c . Further oxidation and epimerization furnished the trans‐ketone (?)‐ 17a , a known intermediate of either (+)‐β‐necrodol (= (+)‐(1S,3S)‐2,2,3‐trimethyl‐4‐methylenecyclopentanemethanol; 17c ) or (+)‐(Z)‐lancifolol (= (1S,3R,4Z)‐2,2,3‐trimethyl‐4‐(4‐methylpent‐3‐enylidene)cyclopentanemethanol). Finally, hydrogenation of (+)‐ 4b gave the saturated cis‐aldehyde (+)‐ 21 , readily reduced to its corresponding alcohol (+)‐ 22a . Similarly, hydrogenation of β‐campholenol (= 2,3,3‐trimethylcyclopent‐1‐ene‐1‐ethanol) gave access via the cis‐alcohol rac‐ 23a , to the cis‐aldehyde rac‐ 24 .  相似文献   

7.
Chiral [2H] -labelled methylene groups flanked by two double bonds within (poly)unsaturated fatty acids are readily available from trans-2,3-epoxy[2,3-2H2] alk-4-yn-l-ols, obtained in their turn by asymmetric epoxidation of the corresponding (E)-[2,3-2H2] alk-2-en-4-yn-l-ols (see Scheme 3). The procedure is exemplified for (8S,3Z,6Z,9Z)-[7,8-2H2] trideca-3,6,9-trienoic acid ((8S)- 11 ) and (8R)- 11 (Scheme 4) as well as for (5S,3Z,6Z)-[4,5?2H2]deca-3,6-dienoic acid ((5S)- 13 ) and (5R)- 13 (Scheme 5).  相似文献   

8.
Summary Oxidation of the (E) and (Z) isomers of 2-arylidene-1-indanones (1) and 2-arylidene-1-benzosuberones (4) by alkaline hydrogen peroxide (methodi) afforded the spiroepoxidestrans-2a–g andtrans-5a–g from both isomers as sole products in high yields. On the other hand, dimethyldioxirane epoxidation(methodii) of the (E) isomers1a–g and4a–g gave the correspondingtrans spiroepoxides in good yields, whereas the (Z) isomers1a,c,e and4a,c,e led to thecis spiroepoxides in moderate yields. Dimethyldioxirane oxidation (methodii) of (Z)-1c and (Z)-4c,e gave diones3c and6c,e as by-products as well. Epoxidation of (Z)-1a,c,e and (Z)-4a,c,e bym-chloroperoxybenzoic acid (methodiii) resulted inca. 6:1 mixtures ofcis-2a,c,e andtrans-2a,c,e orcis-5a,c,e andtrans-5a,c,e spiroepoxides.Dedicated to Prof.W. Fleischhacker on the occasion of his 65th birthday  相似文献   

9.
A method for the synthesis of (E,Z)-2-phenyl-1-chlorocyclopropane-1-carboxylic acid by the addition of ethyl trichloroacetate to styrene in the presence of copper(I) ammine complexes is suggested. The major isomer was isolated as the corresponding acid. The results of X-ray diffraction (XRD) analysis unequivocally prove that the benzene ring and the carboxylic group are in the cis-position and that the molecules form centrosymmetric dimers. (E)-2-phenyl-1-chlorocyclopropane-1-carboxylic acid can serve as a convenient synthon for transamine synthesis.  相似文献   

10.
Photoisomerization of an aromatic analogue of retinoic acid, ethyl all-trans-9-(4-methoxy-2,3,6-trimethylphenyl)-3,7-dimethyl-nona-2,4,6, 8-tetraenoate 1 in dilute solutions of hexane, benzene, and ethanol yielded multi-component mixtures of cis isomers which were separated by HPLC. FT-1H-NMR. at 270 MHz and, in some cases, homonuclear decoupling and Overhauser experiments as well as 13C-NMR. were applied to establish the structures of 4 mono-cis, 4 (of 6 possible) di-cis, and 3 (of 4 possible) tri-cis isomers. The structures of 3 isomeric esters, namely (2Z, 4E, 6E, 8E) 6 , (2Z, 4Z, 6E, 8E) 9 , and (2Z, 4Z, 6Z, 8E) 7 were independently confirmed by direct syntheses. The 1H-NMR. data of all these compounds and the 13C-NMR. data of the all-trans and of 6 cis isomers available in sufficiently large quantities are discussed.  相似文献   

11.
A comparative study of the epoxidation of homoisoflavones (3‐benzyl‐4‐chromones) 1–4 has been performed by various oxidizing agents, víz. Epoxidation with isolated dimethyldioxirane (Method A), with alkaline hydrogen peroxide (Method B), and with sodium hypochlorite (Method C) to obtain the epoxides 4–8 . Compounds 2 and 3 have also been oxidized with a combination of dimethyldioxirane and Jacobsen's Mn(III)salen catalysts (R,R)‐11 and (S,S)‐ 11 to afford 3‐benzoyl‐4‐chromones 9 and 10 . Structures of all new compounds have been elucidated by microanalyses, ir and nmr spectroscopic measurements.  相似文献   

12.
Seven new and three known bisresorcinols, grevirobstol A (=5,5′‐((6Z,9Z)‐hexadeca‐6,9‐diene‐1,16‐diyl)bisresorcinol; 8 ), 5,5′‐[(8Z)‐hexadec‐8‐ene‐1,16‐diyl]bisresorcinol ( 9 ), and 2‐methyl‐5,5′‐[8Z)‐hexadec‐8‐ene‐1,16‐diyl]bisresorcinol ( 10 ) were isolated from the stems of Grevillea glauca. The new compounds were identified on the basis of spectroscopic data as (Z)‐6,7‐didehydroglaucone A ( 1 ), glaucones A and B ( 2 and 3 , resp.), 2‐(3‐hydroxyisopentyl)bisnorstriatol ( 4 ), 2‐(3‐methylbut‐2‐en‐1‐yl)bisnorstriatol ( 5 ), 2′‐methylgrebustol A ( 6 ), and glaucane ( 7 ).  相似文献   

13.
Starting from (all‐Z)‐eicosa‐5,8,11,14,17‐pentaenoic acid (EPA) and (all‐Z)‐4,7,10,13,16,19‐docosahexaenoic acid (DHA), several polyunsaturated fatty acids, containing a sulfur atom either in the chain or in a thiophene ring, have been synthesized as potential inhibitors of lipoxygenases.  相似文献   

14.
Successful application of matrix‐assisted laser desorption/ionization (MALDI) MS started with the introduction of efficient matrices such as cinnamic acid derivatives (i.e. 3,5‐dimethoxy‐4‐hydroxycinnamic acid, SA; α‐cyano‐4‐hydroxycinnamic acid). Since the empirical founding of these matrices, other commercial available cinnamic acids with different nature and location of substituents at benzene ring were attempted. Rational design and synthesis of new cinnamic acids have been recently described too. Because the presence of a rigid double bond in its molecule structure, cinnamic acids can exist as two different geometric isomers, the E‐form and Z‐form. Commercial available cinnamic acids currently used as matrices are the geometric isomers trans or E (E‐cinnamic and trans‐cinnamic acids). As a new rational design of MALDI matrices, Z‐cinnamic acids were synthesized, and their properties as matrices were studied. Their performance was compared with that of the corresponding E‐isomer and classical crystalline matrices (3,5‐dihydroxybenzoic acid; norharmane) in the analysis of neutral/sulfated carbohydrates. Herein, we demonstrate the outstanding performance for Z‐SA. Sulfated oligosaccharides were detected in negative ion mode, and the dissociation of sulfate groups was almost suppressed. Additionally, to better understand the quite different performance of each geometric isomer as matrix, the physical and morphological properties as well as the photochemical stability in solid state were studied. The influence of the E/Z photoisomerization of the matrix during MALDI was evaluated. Finally, molecular modeling (density functional theory study) of the optimized geometry and stereochemistry of E‐cinnamic and Z‐cinnamic acids revealed some factors governing the analyte–matrix interaction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The antipatharian Leiopathes sp., collected around Saint Paul Island, is shown here to contain, in relatively high amounts, the novel fatty acid leiopathic acid ( = (+)-(10R,7Z,11E,13Z,16Z,19Z)-10-hydroxy-7,11,13,16,19-docosapentaenoic acid; (+)- 1 ), besides (+)-(8R,5Z,9E,11Z,14Z,17Z)-8-hydroxy-5,9,11,14,17-icosapentaenoic acid ((+)- 11 ) and (+)-(8R,5Z,9E,11Z,14Z,)-8-hydroxy-05,9,11,14-icosatetraenoic acid ((+)- 16 ) and their ethyl ester (+)- 2 , (+)- 12 , and (+)- 17 .  相似文献   

16.
The reaction of 1‐[ω‐(N‐acylated amino)alkyl]‐3,4‐dihydroisoquinolines ( 7a , 7b , 7c , 7d , 7e ) with homophthalic anhydride ( 1 ) leads to the formation of 8‐oxo‐13a‐[(N‐acylated amino)alkyl]‐8H‐dibenzo[a,g]quinolizine‐13‐carboxylic acids ( 8a–e ) with predomination of cis diastereomers, together with small amount of trans-8a . cis‐13a‐[(N‐Cbzaminomethyl)]‐8‐oxo‐dibenzoquinolizine‐13‐carboxylic acid ( cis-8a ) cyclized to the unknown dibenzo[a,g]pyrrolo[3,4‐i]quinolizinedione ( 10 ) upon moderate heating in methanol.  相似文献   

17.
We present an efficient three‐step, two‐pot synthesis of methyl jasmonate (trans‐ 1 ) based on Diels–Alder cycloaddition of cyclopent‐2‐enone ( 2 ) and chloroprene (= 2‐chlorobuta‐1,3‐diene; 3d ) in either CHCl3 or CH2Cl2, catalyzed by SnCl4 (0.2 mol‐equiv.) at 20° (75% yield). Subsequent ozonolysis of a cis/trans 55 : 45 mixture of the cycloadduct 4d in either CH2Cl2 or AcOEt at ? 78°, followed by addition of Me2S and MeOH in the presence of NaHCO3, afforded, in 64% yield, a cis/trans 40 : 60 mixture of the known aldehyde 5c . The latter was reacted at ? 50° under salt‐free conditions with the propyl Wittig reactant to furnish 1 as a cis/trans 20 : 80 mixture ((E/Z) 3 : 97). Alternatively, a cis/trans 7 : 93 mixture ((E/Z) 4 : 96) was obtained in 88% yield from epimerized 5c (AcOH, H2O, 40°; 99%) under usual Wittig conditions at ? 20°.  相似文献   

18.
A one‐pot method has been developed for the oxidative cleavage of internal alkenes into aldehydes by using 0.5 mol % of the nonheme iron complex [Fe(OTf)2(mix‐bpbp)] (bpbp=N,N′‐bis(2‐picolyl)‐2,2′‐bipyrrolidine) as catalyst and 1.5 equivalents of hydrogen peroxide and 1 equivalent of sodium periodate as oxidants. A mixture of diastereomers of the chiral bpbp ligand can be used, thereby omitting the need for resolution of its optically active components. The cleavage reaction can be performed in one pot within 20 h and under ambient conditions. Addition of water after the epoxidation, acidification and subsequent pH neutralization are crucial to perform the epoxidation, hydrolysis, and subsequent diol cleavage in one pot. High aldehyde yields can be obtained for the cleavage of internal aliphatic double bonds with cis and trans configuration (86–98 %) and unsaturated fatty acids and esters (69–96 %). Good aldehyde yields are obtained in reactions of trisubstituted and terminal alkenes (62–63 %). The products can be easily isolated by a simple extraction step with an organic solvent. The presented protocol involves a lower catalyst loading than conventional methods based on Ru or Os. Also, hydrogen peroxide can be used as the oxidant in this case, which is often disproportionated by second‐ and third‐row metals. By using only mild oxidants, overoxidation of the aldehyde to the carboxylic acid is prevented.  相似文献   

19.
Two new diterpenoids, pedunculatic acid A (= (4R,5α,7α)‐7‐ethoxy‐9β,13β‐dioxyabiet‐8(14)‐en‐18‐oic acid; 1 ) and pedunculatic acid B (= (4S,5α,12β)‐8β,14β‐epoxy‐12‐hydroxy‐11‐oxototaran‐19‐oic acid; 2 ), together with three known sesquiterpenoids, were isolated from the Chinese medicinal herb Callicarpa pedunculata R. Brown . Their structures were elucidated by spectroscopic analyses, including 1D‐ and 2D‐NMR, and by high‐resolution mass spectrometry.  相似文献   

20.
Macrolide lactones, the so called cucujolides derived from unsaturated fatty acids, are aggregation pheromones of cucujid grain beetles. Thirty years ago, Oehlschlarger et al. showed that (3Z,6Z)‐dodeca‐3,6‐dien‐11‐olide ( 4 ) and the respective 12‐olide ( 7 ) attract the sawtoothed grain beetle Oryzaephilus surinamensis, whereas (5Z,8Z,13R)‐tetradeca‐5,8‐dien‐13‐olide ( 5 ) increases the response synergistically. The frass of this beetle is attractive for its parasitoid Cephalonomia tarsalis, which potentially can be used for pest control. A GC/MS analysis of attractive frass showed the presence of 5 , together with an unknown isomer. Cucujolide V was tentatively identified also in the femoral glands, pheromone‐releasing structures, of the Madagascan mantelline frog Spinomantis aglavei. Therefore, a new route to synthesize doubly unsaturated macrolides allowing the flexible attachment of the side chain was developed. A straightforward method to obtain Z configured macrolides involves ring‐closing alkyne metathesis (RCAM) followed by Lindlar‐catalyzed hydrogenation. This methodology was extended to homoconjugated diene macrolides by using RCAM after introduction of one Z configured double bond in the precursor by Wittig reaction. A tungsten benzylidyne complex was used as the catalyst in the RCAM reaction, which afforded the products in high yield at room temperature. With the synthetic material at hand, the unknown isomer was identified as the new natural product (5Z,8Z,12R)‐tetradeca‐5,8‐dien‐12‐olide, cucujolide X ( 8 ). Furthermore, the route also allowed the synthesis of cucujolide V in good yield. The natural products were identified by the synthesis of enantiomerically pure or enriched material and gas chromatography on chiral phases. The new macrolide (R)‐ 8 proved to be biologically active, attracting female O. surinamensis, but no males. The synthetic material allowed the identification of (R)‐ 5 in both the beetle and the frog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号