首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical behaviour of a Cu/CuSe electrode was studied in order to define its selectivity towards cupric ions, Nerstian response, limit of detection and response time. The chalcogenide electrode was prepared by cathodic deposition of Se and subsequent formation of a thin layer of CuSe on a copper substrate. A Cu/CuSe microelectrode was prepared using copper wire 75 μm in diameter. The dimensions and response time (<0.5 s) allowed use of this electrode in the “vibrating probe method” with the aim of measuring net influxes as well as effluxes of copper(II) ions in Olea europaea roots. The electrode potential was measured along the root at a distance of 5 μm from the surface for 5 s, and then again for 5 s at a distance of 55 μm, moving the microelectrode with respect to the root surface by steps with a frequency of 0.1 Hz. The potentials measured at the two extremes of vibration were then converted to copper(II) concentrations. Substitution of these values in Fick's law yields the flux, assuming the diffusion constant D for copper ions in aqueous solutions. The results enabled us to detect copper(II) fluxes as small as 0.05 pmol cm−2 s−1. Copper(II) influx showed marked spatial and temporal features: it was highest at about 1.5 mm from the root apex and exhibited an oscillatory pattern in time. Received: 29 September 1999 / Accepted: 11 January 2000  相似文献   

2.
 The applicability of tetramethylenedithiocarbamate (TMDTC) and hexamethylenedithiocarbamate (HMDTC) for colloid flotation separation of manganese in traces from fresh (spring, well and tap) water was studied. The experimental conditions for the successful manganese separation and preconcentration before electrothermal atomic absorption spectrometric (ETAAS) determination were optimised. Higher enrichment of manganese was achieved when a larger amount of HMDTC is used. Applying iron(III) hexamethylenedithiocarbamate, Fe(HMDTC)3, as a precipitate collector, manganese was determined at μg/L levels singly or simultaneously with lead and zinc in 1 L of water sample. The applicability of the proposed procedure have been verified by analyses of fresh water samples using the method of standard addition, as well as by comparing the results obtained by ETAAS with those obtained by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The detection limit of manganese using this method is 0.025 μg/L. Received August 30, 1999. Revision May 15, 2000  相似文献   

3.
An electrospray ionization tandem mass spectrometric (ESI-MS-MS) method has been developed for the determination of cyanide (CN) in blood. Five microliters of blood was hemolyzed with 50 μL of water, then 5 μL of 1 M tetramethylammonium hydroxide solution was added to raise the pH of the hemolysate and to liberate CN from methemoglobin. CN was then reacted with NaAuCl4 to produce dicyanogold, Au(CN)2, that was extracted with 75 μL of methyl isobutyl ketone. Ten microliters of the extract was injected directly into an ESI-MS-MS instrument and quantification of CN was performed by selected reaction monitoring of the product ion CN at m/z 26, derived from the precursor ion Au(CN)2 at m/z 249. CN could be measured in the quantification range of 2.60 to 260 μg/L with the limit of detection at 0.56 μg/L in blood. This method was applied to the analysis of clinical samples and the concentrations of CN in the blood were as follows: 7.13 ± 2.41 μg/L for six healthy non-smokers, 3.08 ± 1.12 μg/L for six CO gas victims, 730 ± 867 μg for 21 house fire victims, and 3,030 ± 97 μg/L for a victim who ingested NaCN. The increase of CN in the blood of a victim who ingested NaN3 was confirmed using MS-MS for the first time, and the concentrations of CN in the blood, gastric content and urine were 78.5 ± 5.5, 11.8 ± 0.5, and 11.4 ± 0.8 μg/L, respectively.  相似文献   

4.
 In this work it was established that, in the presence of ammonium carbonate, traces of manganese(II) catalyse the oxidation of Nile Blue A by hydrogen peroxide, which enables its kinetic determination in the concentration range from 6.6 to 65.9 ng cm−3, the detection limit being 8.0 × 10−2 ng cm−3. Antiviral/antitumour substances modify the catalytic activity of manganese(II): 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide, ribavirin, increases the catalytic effect of manganese(II), while 2-β-D-ribofuranosyl-thiazole-4-carboxamide, tiazofurin, acts as an inhibitor. On the basis of these effects, a kinetic method for determining ribavirin concentrations from 0.5 × 10−1 to 4.0 × 10−1 μg cm−3 and tiazofurin concentrations from 0.3 to 2.6 μg cm−3 is proposed. The kinetics of the indicator reaction were studied in the presence of the substances examined, the kinetic equations established, and the constants of the corresponding reaction rates calculated. The effect of temperature on these reactions was also investigated. The method was applied to the determination of manganese(II) in mineral water and ribavirin in pharmaceutical preparations. Received December 16, 1999. Revision June 6, 2000.  相似文献   

5.
 A tungsten-rhodium coating on the integrated platform of a transversely heated graphite atomiser (THGA) was used as a permanent chemical modifier for the determination of Cd in sediment slurries by electrothermal atomic absorption spectrometry. Slurries were ultrasonicated during 20 s before being delivered to the previously W-Rh treated platform. The permanent W-Rh modifier remains stable by approximately 250 measurements when 20 μl of slurries containing up to 1.0% m/v are delivered into the atomiser. In addition, the permanent modifier increases the tube lifetime up to 720 analytical firings. Also, when the W-Rh permanent modifier was employed, there was less variation of the slope of the analytical curves during the total atomiser lifetime, resulting in a decreased need of re-calibration during routine analysis, increasing the sample throughput. The atomiser lifetime was limited to the THGA wall durability, because the W-Rh treated platform was intact after more than 720 analytical firings. Detection limits based on integrated absorbance for 1.0% m/v slurries were 1.5 ng g−1 Cd for 250 μg W +200 μg Rh permanent modifier and 11.5 ng−1 Cd for 5 μg Pd +3 μg Mg(NO3)2. Results for the determination of cadmium in sediment slurries using the W-Rh permanent modifier were in agreement with those obtained with dissolved sample solutions by using Pd + Mg(NO3)2, since no statistical differences were found by the paired t-test at the 99% level. Received September 6, 1999. Revision December 1, 1999.  相似文献   

6.
An anodic stripping voltammetric procedure for the determination of Cu(II) at an in situ-plated stannum film electrode (SnFE) was described. The results indicated that the SnFE had an attractive electroanalytical performance, with two distinct voltammetric stripping signals for copper and stannum, and showed the superior advantage for the determination of copper compared with the bismuth film electrode. Several experimental parameters were optimized. The SnFE exhibited highly linear behavior in the concentration range from 1.0 to 100.0 μg L−1 of Cu(II) (r = 0.994) with the detection limit of 0.61 μg L−1 (S/N = 3), and the relative standard deviation for a solution containing 40.0 μg L−1 Cu(II) was 2.2% (n = 8). The procedure has been successfully applied for the determination of Cu(II) in lake water sample.  相似文献   

7.
SiO2/ZrO2/C carbon ceramic material with composition (in wt%) SiO2 = 50, ZrO2 = 20, and C = 30 was prepared by the sol–gel-processing method. A high-resolution transmission electron microscopy image showed that ZrO2 and the graphite particles are well dispersed inside the matrix. The electrical conductivity obtained for the pressed disks of the material was 18 S cm−1, indicating that C particles are also well interconnected inside the solid. An electrode modified with flavin adenine dinucleotide (FAD) prepared by immersing the solid SiO2/ZrO2/C, molded as a pressed disk, inside a FAD solution (1.0 × 10−3 mol L−1) was used to investigate the electrocatalytic reduction of bromate and iodate. The reduction of both ions occurred at a peak potential of −0.41 V vs. the saturated calomel reference electrode. The linear response range (lrr) and detection limit (dl) were: BrO3 , lrr = 4.98 × 10−5–1.23 × 10−3 mol L−1 and dl = 2.33 μmol L−1; IO3 , lrr = 4.98 × 10−5 up to 2.42 × 10−3 and dl = 1.46 μmol L−1 for iodate.  相似文献   

8.
A simple method was used to fabricate flavin adenine dinucleotide (FAD)/NiOx nanocomposite on the surface of glassy carbon (GC) electrode. Cyclic voltammetry technique was applied for deposition nickel oxide nanostructures onto GC surface. Owing to its high biocompatibility and large surface area of nickel oxide nanomaterials with immersing the GC/NiOx-modified electrode into FAD solution for a short period of time, 10–140 s, a stable thin layer of the FAD molecules immobilized onto electrode surface. The FAD/NiOx films exhibited a pair of well-defined, stable, and nearly reversible CV peaks at wide pH range (2–10). The formal potential of adsorbed FAD onto nickel oxide nanoparticles film, E o′ vs. Ag/AgCl reference electrode is −0.44 V in pH 7 buffer solutions was similar to dissolved FAD and changed linearly with a slope of 58.6 mV/pH in the pH range 2–10. The surface coverage and heterogeneous electron transfer rate constant (k s ) of FAD immobilized on NiOx film glassy carbon electrode are 4.66 × 10−11 mol cm−2 and 63 ± 0.1 s−1, indicating the high loading ability of the nickel oxide nanoparticles and great facilitation of the electron transfer between FAD and nickel oxide nanoparticles. FAD/NiOx nanocomposite-modified GC electrode shows excellent electrocatalytic activity toward S2O82− reduction at reduced overpotential. Furthermore, rotated modified electrode illustrates good analytical performance for amperometric detection of S2O82−. Under optimized condition, the concentration calibration range, detection limit, and sensitivity were 3 μM–1.5 mM, 0.38 μM and 16.6 nA/μM, respectively.  相似文献   

9.
 Sorption of copper on filter-paper with chemically attached hexamethylenediamino-groups (HMDA-filter) allows to obtain the sorbent (Cu/HMDA-filter) stable in respect to desorption of copper. A nitrogen-containing herbicide imazapyr (imaz) is retained on Cu/HMDA-filters at pH 5.5–7.0 forming a relatively stable complex. Imazapyr is determined directly on the sorbent by its activating effect in the oxidation of hydroquinone with H2O2 catalyzed by Cu(II) with the formation of a product absorbing at 490 nm. The copper ions serve both to preconcentrate imazapyr and to catalyze the indicator reaction. The use of 1-μL sample aliquots pipetted onto the Cu/HMDA-filters allows to determine 1 × 10−3–0.03 μmol of imazapyr, whereas preconcentration of the analyte by pumping of its solution through the same sorbent expands the linear range to 1 × 10−4–1 × 10−1 μmol of imazapyr. When the indicator reaction is carried out in solution, the range of activating action of imazapyr is narrower (0.06–0.1 μmol a for a solution volume of 10 mL). The determination is selective: 5–100-fold amounts of amines, aminoacids, carboxylic acid derivatives and other model compounds do not interfere. Soil extracts and carrot juice samples spiked with imazapyr have been analyzed. Received January 10, 2000. Revision July 28, 2000.  相似文献   

10.
 Procedures for the preparation at low temperature (80 °C) of uniform colloids consisting of Mn3O4 nanoparticles (about 20 nm) or elongated α-MnOOH particles with length less than 2 μm and width 0.4 μm or less, based on the forced hydrolysis of aqueous manganese(II) acetate solutions in the absence (Mn3O4) or the presence (α-MnOOH) of HCl are described. These solids are only produced under a very restrictive range of reagent concentrations involving solutions of 0.2–0.4 mol dm−3 manganese(II) acetate for Mn3O4 and of 1.6–2 mol dm−3 Mn(II) and 0.2–0.3 mol dm−3 HCl for α-MnOOH. The role that the acetate anions play in the precipitation of these solids is analyzed. It seems that these anions promote the oxidation of Mn(II) to Mn(III), which readily hydrolyze causing precipitation. The evolution of the characteristics of the powders with temperature up to 900 °C is also reported. Thus, Mn3O4 particles transform to Mn2O3 upon calcination at 800 °C; this is accompained by a sintering process. The α-MnOOH sample also experiences several phase transformations on heating. First, it is oxidized at low temperatures (250–450 °C) giving MnO2 (pyrolusite), which is further reduced to Mn2O3 at 800 °C. After this process the particles still retain their elongated shape. Received: 19 October 1999 Accepted: 24 November 1999  相似文献   

11.
The electrochemical solid phase micro-extraction of salicylic acid (SA) at graphite-epoxy-composed solid electrode surface was studied by cyclic voltammetry. SA was oxidized electrochemically in pH 12.0 aqueous solution at 0.70 V (vs. saturated calomel electrode) for 7 s. The oxidized product shows two surface-controlled reversible redox couples with two proton transferred in the pH range of 1.0∼6.0 and one proton transferred in the pH range of 10.0∼13.0 and is extracted on the electrode surface with a kinetic Boltzman function of i p = 3.473–4.499/[1 + e(t − 7.332)/6.123] (χ 2 = 0.00285 μA). The anodic peak current of the extracted specie in differential pulse voltammograms is proportional to the concentration of SA with regression equation of i p = −5.913 + 0.4843 c (R = 0.995, SD = 1.6 μA) in the range of 5.00∼200 μM. The detection limit is 5.00 μM with RSD of 1.59% at 60 μM. The method is sensitive and convenient and was applied to the detection of SA in mouse blood samples with satisfactory results.  相似文献   

12.
In this work, 3-aminopropyltriethoxysilane modified Fe3O4 nanoparticles (ATPS-Fe3O4) were used to modify glassy carbon electrode for aminopyrine determination. ATPS-Fe3O4 showed obviously catalytic activity and adsorptivity towards aminopyrine oxidation proven by the increased oxidation peak current and the decreased oxidation peak potential. The best analytical response was obtained by immobilizing 8 μL 3 mg/mL APTS-Fe3O4 dispersion with an accumulation time of 200 s at −0.2 V in 0.1 M phosphate buffer solution (pH 9.0). The oxidation peak current of aminopyrine showed linear relationship with its concentration in the range from 0.5 to 100 and 100 to 1600 μM. The detection limit was 0.1 μM (S/N = 3). The proposed method showed satisfactory repeatability and anti-interference ability. The fabricated electrode was successfully applied to determine aminopyrine in pharmaceutical formulations.  相似文献   

13.
A method to fabricate poly(3,4-ethylene dioxythiophene)-poly(4-styrene sulfonate)-Meldola Blue (PEDOT-PSS-MDB)-modified electrodes had been disclosed. Firstly, the PEDOT-PSS-film-modified electrode was electrochemically prepared. Then, the PEDOT-PSS was treated as a matrix to immobilize electroactive mediator, Meldola Blue (MDB), by means of an electrostatic interaction to form the proposed film, PEDOT-PSS-MDB. Electrochemical properties of the proposed film exhibited surface confinement and pH dependence. The PEDOT-PSS-MDB electrode could electrocatalytically reduce hydrogen peroxide (H2O2) with a low overpotential and showed a linear response to H2O2 in the concentration range of 5 to 120 μM, detection limit of 0.1 μM, and sensitivity of 353.9 μA mM−1 cm−2 (S/N = 3). By comparison, the electrocatalytic activity of PEDOT-PSS-MDB electrode was found superior to that of PEDOT-PSS and MDB-PSS electrodes. It also has competitive potential as compared with other mediators, through the use of HRP to determine H2O2. Moreover, the potential interferents such as ascorbic acid, dopamine, uric acid, and glucose were also studied for H2O2 determination by the proposed film.  相似文献   

14.
The preparation and electrochemical characterization of a carbon nanotube paste electrode modified with 2,2′-[1,2-ethanediylbis (nitriloethylidyne)]-bis-hydroquinone, referred to as EBNBH, was investigated. The EBNBH carbon nanotube paste electrode (EBNBHCNPE) displayed one pair of reversible peaks at E pa = 0.18 V and E pc = 0.115 V vs Ag/AgCl. Half wave potential (E 1/2) and ΔE p were 0.148 and 0.065 V vs Ag/AgCl, respectively. The electrocatalytic oxidation of ascorbic acid (AA) has been studied on EBNBHCNPE, using cyclic voltammetry, differential pulse voltammetry and chronoamperometry techniques. It has been shown that the oxidation of AA occurs at a potential where oxidation is not observed at the unmodified carbon paste electrode. The heterogeneous rate constant for oxidation of AA at the EBNBHCNPE was also determined and found to be about 1.07 × 10−3 cm s−1. The diffusion coefficient of AA was also estimated as 5.66 × 10−6 cm2 s−1 for the experimental conditions, using chronoamperometry. Also, this modified electrode presented the property of electrocatalysing the oxidation of AA and uric acid (UA) at 0.18 and 0.35 V vs Ag/AgCl, respectively. The separations of anodic peak potentials of AA and UA reached 0.17 V. Using differential pulse voltammetry, the calibration curves for AA and UA were obtained over the range of 0.1–800 μM and 20–700 μM, respectively. With good selectivity and sensitivity, the present method provides a simple method for selective detection of AA and UA in biological samples.  相似文献   

15.
 A simple, reliable and reproducible method, based on capillary electrophoresis (CE) with electrochemical detection (ED), for the determination of three active ingredients of both Apocynum Venetum compound tablets and medicinal herbs was described. The active ingredients mainly consist of rutin, d-catechin and quercetin. Operated in a wall-jet configuration, a 300 μm diameter carbon-disk electrode was used as the working electrode, which exhibits good responses at + 950 mV (vs. SCE) for the three analytes. Under the optimum conditions, the analytes were base-line separated within 19 min, and excellent linearity was obtained in the concentration range from 1.0 × 10−4 g/ml to 1.0 × 10−6 g/ml. The detection limit (S/N = 3) was 3.0 × 10−7 g/ml, 5.0 × 10−7 g/ml, and 4.0 × 10−7 g/ml for d-catechin, rutin and quercetin, respectively. This work provides a useful method for the analysis of traditional Chinese medicines. Received July 12, 2000. Revision January 3, 2001.  相似文献   

16.
Solvent extraction of molybdenum(VI) ion associate with triphenyltetrazolium chloride (TTC) has been studied. TTC was proposed as reagent for the spectrophotometric determination of micro amounts of molybdenum(VI) at λmax 250 nm. The optimum conditions for extraction of molybdenum(VI) as an ionassociation complex with TTC has been determined. Beer’s law is obeyed in the range of 0.5–10 μg/mL molybdenum(VI). The molar absorptivity of the ion-pair is 1 × 106 L/mol cm. The sensitivity of the method is 9.6 × 10−5 μg/cm2. The characteristic values for the extraction equilibrium and the equilibrium in the aqueous phase are: distribution constant K D = 32.64, extraction constant K ex = 2.19 × 1010 association constant β = 6.71 × 108. The interferences of different cations, anions on molybdenum(VI) determination were also investigated. A sensitive and selective method for the determination of microquantities of molybdenum(VI) has been developed. The determination was carried out without preliminary separation of molybdenum. A novel procedure of molybdenum(VI) extraction and spectrophotometric determination in different plant samples was examined.  相似文献   

17.
Trace amounts of gold and silver in high-purity iron or steel were preconcentrated by reductive coprecipitation with palladium using ascorbic acid, and determined by electrothermal atomic absorption spectrometry (ET-AAS). Both gold and silver could be simultaneously separated and sensitively determined in 10 metals (aluminum, cobalt, chromium, copper, iron, manganese, molybdenum, nickel, vanadium and zinc). Comparable values were obtained for gold and silver in reference materials (low alloy steel) by the proposed method and a non-separation method; good agreement was found between the analytical values by both methods and the certified values. The proposed method is easy, simple and not dependent on sample composition and content. Moreover, gold and silver in metal samples could be simultaneously separated together with selenium and tellurium. The detection limits for gold and silver (3 σ) are 0.003 μg g–1 and 0.002 μg g–1, respectively. Received: 3 February 2000 / Revised: 11 April 2000 / Accepted: 16 April 2000  相似文献   

18.
Trace amounts of gold and silver in high-purity iron or steel were preconcentrated by reductive coprecipitation with palladium using ascorbic acid, and determined by electrothermal atomic absorption spectrometry (ET-AAS). Both gold and silver could be simultaneously separated and sensitively determined in 10 metals (aluminum, cobalt, chromium, copper, iron, manganese, molybdenum, nickel, vanadium and zinc). Comparable values were obtained for gold and silver in reference materials (low alloy steel) by the proposed method and a non-separation method; good agreement was found between the analytical values by both methods and the certified values. The proposed method is easy, simple and not dependent on sample composition and content. Moreover, gold and silver in metal samples could be simultaneously separated together with selenium and tellurium. The detection limits for gold and silver (3 σ) are 0.003 μg g–1 and 0.002 μg g–1, respectively. Received: 3 February 2000 / Revised: 11 April 2000 / Accepted: 16 April 2000  相似文献   

19.
Ozone (O3) has been electrochemically generated on PbO2-loaded Pt screens (PbO2/Pts) at 25 °C from H2SO4 solutions. The PbO2/Pts electrodes were electrochemically and morphologically characterized by cyclic voltammetry and scanning electron microscopy (SEM), respectively. Different loadings of PbO2 and different acid concentrations (C acid) were used in this study. Higher efficiency (8%) for O3 electrogeneration was obtained at an applied potential of 1.8 V, higher C acid, and loading density of PbO2 ≥ 9.3 μmol cm−2 (of Pt screen) at room temperature. The stability of the prepared electrode was examined under the present experimental conditions. SEM images and current transients showed reasonable electrochemical and mechanical stability of the PbO2/Pts. The data were discussed in the light of results obtained on planar Pt electrode at similar conditions.  相似文献   

20.
In the present work, a new voltammetric sensor, Langmuir–Blodgett (LB) film of tetraoxocalix[2]arene[2]triazine (TOCT) modified glassy carbon electrode (LBTOCT-GCE), for trace analysis of copper ion in water samples, was prepared. The morphology of LBTOCT-GCE was characterized by cyclic voltammetric method, electrochemical impedance spectroscopy, and atomic force microscope. The recognizing mechanism of LBTOCT-GCE for copper ion in aqueous solution was discussed. Under the optimum experimental conditions, using square wave stripping voltammetry and accumulation time of 300 s, the peak currents were linear relationship with Cu2+ concentrations in the range of 2 × 10−9 to 1 × 10−6 mol L−1, with detection limit of 1 × 10−10 mol L−1. By this method, real samples (lake water, drinking water, and city wastewater) were analyzed with satisfactory results. In addition, the fabricated electrode exhibited a distinct advantage of simple preparation, non-toxicity, good reproducibility, and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号