首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fuel economy at boost trajectory of the aerospace plane was estimated during energy supply to the free stream. Initial and final flight velocities were specified. The model of a gliding flight above cold air in an infinite isobaric thermal wake was used. The fuel consumption rates were compared at optimal trajectory. The calculations were carried out using a combined power plant consisting of ramjet and liquid-propellant engine. An exergy model was built in the first part of the paper to estimate the ramjet thrust and specific impulse. A quadratic dependence on aerodynamic lift was used to estimate the aerodynamic drag of aircraft. The energy for flow heating was obtained at the expense of an equivalent reduction of the exergy of combustion products. The dependencies were obtained for increasing the range coefficient of cruise flight for different Mach numbers. The second part of the paper presents a mathematical model for the boost interval of the aircraft flight trajectory and the computational results for the reduction of fuel consumption at the boost trajectory for a given value of the energy supplied in front of the aircraft.  相似文献   

2.
高超声速脉冲风洞模型自由飞试验技术   总被引:2,自引:0,他引:2       下载免费PDF全文
风洞模型自由飞试验利用高速相机记录自由飞行模型的运动历程, 再根据模型运动特征参数反演模型的气动特性.由于没有支撑系统的干扰, 该试验能够较真实地模拟飞行状态, 在飞行器静/动稳定特性研究中具有独特的优势.文章在JF-8A高超声速脉冲风洞中开展了10°尖锥模型自由飞试验, 并以圆球模型的自由飞运动测量风洞动压, 对模型运动特征参数的数字图像提取技术及气动参数的辨识方法等关键技术进行了研究.   相似文献   

3.
The exergy method is developed for computing the ramjet thrust-economic characteristics with regard for real thermodynamic properties of combustion products when using as fuel the hydrogen and hydrocarbon fuel for the freestream Mach numbers M = 4 ÷ 14. The estimates for the specific impulse of the given engine using the presented technique are shown to agree with the estimates computed by other authors. The computational method is intended for obtaining the ramjet characteristics and conduction of the parameter analysis at the research initial stage as well as for its use at the conceptual developments of hypersonic flying vehicles.  相似文献   

4.
Turbulent atmosphere, gusts, and manoeuvres significantly excite aircraft rigid body motions and structural vibrations, which leads to reduced ride comfort and increased structural loads. In particular BWB (Blended Wing Body) aircraft configurations, while promising a significant fuel efficiency improvement compared to wing-tube configurations, exhibit severe sensitivity to gusts. In general, a flexible aircraft represents a lightly damped structure involving a large variety of uncertainties due to fuel mass variations during flight, control system nonlinearities, aerodynamic nonlinearities, and structural nonlinearities, to name just a few. Especially at the beginning of flight testing of a newly developed aircraft type, plant models generally require a lot of verification and adjustment based on obtained flight test data, before they can be used reliably for control law design. Adaptive control already is a well-established method for many active noise and vibration control problems, and thus is proposed here for application to the problem of gust load alleviation. However, safety requirements are significantly higher for gust load alleviation systems than for most noise and vibration control systems. This paper proposes a MIMO (Multi-Input Multi-Output) adaptive feed-forward controller for the alleviation of turbulence-induced rigid body motions and structural vibrations on aircraft. The major contribution to the research field of active noise and vibration control is the presentation of a detailed stability analysis of the MIMO adaptive algorithm in order to support potential certification of this method for a safety-critical application. Finally, the proposed MIMO adaptive feed-forward vibration controller is applied to a longitudinal flight dynamics model of a large flexible BWB airliner in order to verify the derived vibration controller on a challenging control problem.  相似文献   

5.
基于Kriging代理模型的飞行器结构刚度气动优化设计   总被引:1,自引:0,他引:1       下载免费PDF全文
大飞机具有轻质大柔性特点,使得气动/结构耦合作用增强,在设计过程中需要考虑这种耦合效应,直接调用CSD/CFD方法计算周期长,无法满足工程需要.代理模型方法由于能显著提高工程优化设计的效率,已广泛应用于飞行器气动外形优化设计中.采用Kriging方法建立代理模型,通过求解EI函数最大值得到需添加的样本点以更新代理模型,提高代理模型的拟合精度,结合改进的粒子群最优化方法对大飞机的结构刚度进行了优化设计.结果表明,该优化方法能够处理复杂目标的全局优化问题,在保证升力系数及纵向稳定性能不恶化的前提下,降低飞机巡航状态的飞行阻力.   相似文献   

6.
Experimental values of complexes of aerodynamic derivatives were obtained in a wind tunnel and analyzed for subsonic flow of a passenger aircraft model with harmonic oscillations on the rolling and yawing angles. It was demonstrated that for near-critical angles of attack, the complexes of aerodynamic derivatives taken for rolling and yawing have a string dependency on the normalized oscillation frequency. It was proven that this dependency is driven by derivatives with respect to angular velocities and angular acceleration. A mathematical model for aerodynamic loads was developed; it can be applied for aircraft flight dynamic problems and has satisfactory approximation to experimental aerodynamic characteristics.  相似文献   

7.
In this paper,a high-efficiency aerothermoelastic analysis method based on unified hypersonic lifting surface theory is established.The method adopts a two-way coupling form that couples the structure,aerodynamic force,and aerodynamic thermo and heat conduction.The aerodynamic force is first calculated based on unified hypersonic lifting surface theory,and then the Eckert reference temperature method is used to solve the temperature field,where the transient heat conduction is solved using Fourier’s law,and the modal method is used for the aeroelastic correction.Finally,flutter is analyzed based on the p-k method.The aerothermoelastic behavior of a typical hypersonic low-aspect ratio wing is then analyzed,and the results indicate the following:(1)the combined effects of the aerodynamic load and thermal load both deform the wing,which would increase if the flexibility,size,and flight time of the hypersonic aircraft increase;(2)the effect of heat accumulation should be noted,and therefore,the trajectory parameters should be considered in the design of hypersonic flight vehicles to avoid hazardous conditions,such as flutter.  相似文献   

8.
高泽海  马存宝  宋东 《应用声学》2015,23(5):1703-1705, 1709
飞机燃油系统作为飞机不可或缺的功能和保障系统,对飞机的安全性有着重大的影响。针对飞机燃油供油系统的故障诊断问题,利用流体仿真软件Flowmaster建立了供油系统模型。仿真了飞机燃油系统增压泵供油、交输供油、重力供油的工作情况。分析了飞机燃油供油系统的故障模式,仿真了在几种典型故障模型下的工作情况,并对仿真结果进行了分析。结果表明利用Flowmaster所建立的供油系统模型能有效地仿真飞机燃油系统正常与故障工作情况,为飞机燃油系统的故障诊断打下了基础。  相似文献   

9.
This paper describes a theoretical modelling of the effect of aircraft flight on the diffractional generation of sound which occurs when shear layer turbulence convects at high speed past a trailing edge. This is relevant to the study of noise problems associated with blown flaps, powered lift and aerodynamic shielding devices. The analysis is conducted for a two-dimensional configuration at arbitrary subsonic flight velocity. It is concluded that in the absence of a Kutta condition at the trailing edge, the effect of flight results in a forward arc amplification of the diffraction radiation through a single Doppler factor on the linear acoustic pressure field. The forward arc lift in the field shape disappears when a Kutta condition is imposed. In all cases the intensity of the diffraction radiation at 90° to the flight path is diminished by forward motion of the aircraft.  相似文献   

10.
An exergy analysis of possible regimes of energy supply to the air flow in the ramjet duct is carried out. A condition for the supply of a given heat amount to supersonic flow and a condition of the passage across the sound velocity are obtained for a duct with variable cross-sectional area. An analysis of the flow in a model ramjet duct at a pulsed-periodic energy supply is carried out. For a clear demonstration of possible schemes of heat supply in such a duct, a diagram in the temperature-exergy coordinates is proposed. A duct configuration in which the heat supply to supersonic flow is realized with regard for the limitation of the gas static temperature is proposed.  相似文献   

11.
雷国东  李岩  徐悦 《气体物理》2022,7(5):50-62
提出了一种使用翼身融合布局载机背载火箭助推空天飞行器的概念设计及其载机平台的气动优化设计, 本设计第1级是1个大型亚跨声速翼身融合布局载机, 第2级是两个推进剂外贮箱, 第3级是一种有翼火箭推进飞行器, 空基发射相对陆基或海基发射的优势是在同等入轨质量条件下, 可以大幅度减小初始发射质量, 大幅度节省推进剂, 显著降低发射成本, 提高空天发射的便捷性, 经过设计估算, 可以1×106 kg量级起飞达到陆基多级火箭2×106 kg量级发射航天飞机级质量的目的, 并可以重复使用。对于第3级飞行器, 利用空天飞行器因其具有的高度和速度而蓄积的引力势能和动能, 具有实现环球飞行量级的大航程高速无动力滑翔飞行的潜力, 探索空射型助推滑翔式系统如何将这些巨大能量缓慢释放用于实现无动力远距离高空高速滑翔飞行。考虑到高超声速飞行器部分的气动优化潜力有限, 利用多点多约束气动优化设计方法实现了载机平台高空发射状态升阻比的较大增加和起飞状态升力系数的显著增长, 用以增大载机平台的载重能力, 而载重能力的增加可用于提升空射系统的入轨质量或者滑翔航程, 从而优化系统整体。   相似文献   

12.
首先介绍了高速飞行器设计所面临的静稳定裕度、航向操纵性、三通道耦合、安全边界等问题,进一步梳理了高速飞行器的失控成因,包括飞行环境、飞行姿态、控制耦合、惯性耦合、动力学耦合等因素,在此基础上,回顾了一系列适用于飞行器设计的典型抗失控判据,如横航向稳定性参数、动态航向稳定性参数、横/航向操纵偏离参数、Weissman组合判据、横向稳定性特征参数等.这些参数或判据不仅可以在设计初期预测气动布局的好坏及其对操稳特性的影响,帮助工程师改进气动布局以使飞行器获得最佳的性能,还可用来预测飞行器在当前气动布局下所需要的控制资源以帮助飞行器合理应对耦合的影响,最后在设计完成后还可用这些判据分析飞行器飞行过程中的稳定性以及控制策略的合理性.   相似文献   

13.

Abstract  

This paper describes the effect of the seams of a rugby ball on the side force and the flight trajectory of the punted kick. Measurement of the aerodynamic force on a non-spinning rugby ball reveals that the side force coefficient depends on the position of the seam as well as the angle of attack. It was found from pressure-sensitive paint measurements that the seam of the ball is the trigger for initiating low pressure when the seam is situated around 60° from the stagnation point. The flight trajectory of the fluctuating ball can be obtained by numerically integrating the six degree-of-freedom non-linear equations of motion. It was shown that a slower spinning ball fluctuates from side to side during flight because of the asymmetrical pressure distribution on the sides of the ball.  相似文献   

14.
The main thrust characteristics, such as thrust force, specific impulse, specific fuel consumption, and specific thrust, of a pulse detonation engine (PDE) with an air intake and nozzle in conditions of flight at a Mach number of 3 and various altitudes (from 8 to 28 km above sea level) are for the first time calculated with consideration given to the physicochemical characteristics of the oxidation and combustion of hydro-carbon fuel (propane), finite time of turbulent flame acceleration, and deflagration-to-detonation transition (DDT). In addition, a parametric analysis of the influence of the operation mode and design parameters of the PDE on its thrust characteristics in flight at a Mach number of 3 and an altitude of 16 km is performed, and the characteristics of engines with direct initiation of detonation and fast deflagration are compared. It is shown that a PDE of this design greatly exceeds an ideal ramjet engine in specific thrust, whereas regarding the specific impulse and specific fuel consumption, it is not inferior to the ideal ramjet.  相似文献   

15.
The authors discuss a possibility to use a diverging dual-combustion chamber as applied to high-supersonic boost ramjets operating at flight Mach numbers up to Mf = 8–10. Due to diverging, this chamber allows beginning the ramjet operation from flight Mach numbers Mf ini = 2–3. The diverging combustion chamber is characterized by a ratio of its exit cross-sectional area relative to the cross-sectional area of air-intake throat. This expansion area ratio is determined at Mf = Mf ini, but it should be the same at all flight Mach numbers Mf ? Mf ini, and depends on two factors: the location of a normal shock in the air-intake throat and the condition of reaching the critical velocity at the chamber exit. The dual-combustion chamber provides heat supply in its alone channel first to the subsonic flow and then, along with acceleration of the flying vehicle, to the supersonic flow, which is bound with a decrease in relative heating of working gas. Calculations of characteristics of an exemplified dual-combustion ramjet considered with a twodimensional air-intake were performed in the range of Mf = 3–7.  相似文献   

16.
A design of an axisymmetric solid fuel ramjet consisting of a multi wedges nose air intake, solid fuel gas gene-rator, combustion chamber, and a nozzle, was developed. According to this design, a ramjet model for tests in the ground wind-tunnel facilities was fabricated. Experiments with solid fuel combustion were carried out in the Transit-M and T-313 wind tunnels, ITAM SB RAS, at air-flow Mach numbers М = 2.5?5.0. High values of the internal and net excess thrust were obtained.  相似文献   

17.
Multidimensional calculations are performed to demonstrate that, by its characteristics, the pulse detonation engine (PDE) is a unique type of ramjet propulsion system, which can be used in both subsonic and supersonic aircraft. By a number of examples, it is shown that, in various thrust characteristics, such as the specific impulse, specific fuel consumption, and specific thrust, the PDE substantially exceeds ramjet engines.  相似文献   

18.
This study is aimed at investigating the possibility of pressure variation near the surface of a body placed in a supersonic flow as a model of an aerofoil or the nose of an aircraft by organizing a surface gas discharge in a magnetic field transverse to the flow. The flow parameters and pressure are mainly affected by the ponderomotive Lorentz force acting on the gas in the direction orthogonal to the direction of the organized discharge current and leading to the removal or compression of the gas at the surface of the body and, hence, a variation of pressure. Experimental data on the visualization of the flow and on the pressure at the surface of the body are considered for various configurations of the current and intensities of the gas discharge and magnetic field; it is demonstrated that such configurations of the current and magnetic field near the surface of the body under investigation can be organized in such a way that the pressure at the front part as well as the upper and lower surfaces of the body under investigation can be increased or decreased, thus changing the aerodynamic drag and the aerofoil lift. Such a magnetohydrodynamic control over aerodynamic parameters of the aircraft can be used during takeoff and landing as well as during steady-state flight and also during the entrance into dense atmospheric layers. This will considerably reduce the thermal load on the surface of the body in the flow.  相似文献   

19.
彭燕萍  郭文  张斌  李涛  刘庆杰 《应用声学》2016,24(12):36-36
在无人机方案设计初期,需对气动关键参数进行数字仿真,以验证其能否适应复杂气象条件。为研究无人机在遭遇垂直突风时,其相关参数的动态响应情况,基于simulink建立了数字飞机模型及突风模型,完成了90s的飞行仿真。结果表明,无人机在地轴系Z向遭遇风速为50ms/s时长2s的垂直突风时,其飞行高度、速度等参数均在设计范围内波动,在突风消失后,飞机恢复稳定状态。为后期的系统设计和飞行试验奠定良好的基础。  相似文献   

20.
张昊春  曲博岩  金亮 《应用光学》2019,40(6):929-936
针对飞行器红外探测过程的成像仿真,有助于红外隐身效能的评估,进而提高应对红外探测的反侦察能力。建立了飞机红外成像仿真模型,并针对不同的飞行姿态、速度以及不同的探测时间,求解其蒙皮温度与红外辐射亮度,结果表明当飞机从低速到高速运行时,太阳辐射条件与气动加热层温度分布分别成为影响其成像结果的主要因素。建模方法及仿真结果对飞行器的隐身设计具有指导意义,为飞机实时红外成像场景的生成提供理论基础  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号