首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
构建了激光声实验测量系统,利用脉冲激光聚焦击穿水介质产生声信号,由水听器将声信号转换成电信号并送入数字存储示波器。分析了激光声信号的时频域数学模型,实验研究了激光声信号的频域能量分布,以及激光器重复频率和激光声信号频谱特性的关系。结果表明:激光声信号能量主要集中在200 kHz内,其中100~200 kHz内的能量所占比例约50%。激光声信号的幅频响应极大值点可以受到激光器重复频率的控制。  相似文献   

2.
Acoustic signals from wild Neophocaena phocaenoides sunameri were recorded in the waters off Liao-dong-wan Bay located in Bohai Sea, China. Signal analysis shows that N. p. sunameri produced "typical" phocoenid clicks. The peak frequencies f(p) of clicks ranged from 113 to 131 kHz with an average of 121+/-3.78 kHz (n=71). The 3 dB bandwidths delta f ranged from 10.9 to 25.0 kHz with an average of 17.5+/-3.30 kHz. The signal durations delta t ranged from 56 to 109 micros with an average 80+/-11.49 micros. The number of cycles N(c) ranged from 7 to 13 with an average of 9+/-1.48. With increasing peak frequency there was a faint tendency of decrease in bandwidth, which implies a nonconstant value of f(p)/delta f. On occasion there were some click trains with faint click energy presenting below 70 kHz, however, it was possibly introduced by interference effect from multiple pulses structures. The acoustic parameters of the clicks were compared between the investigated population and a riverine population of finless porpoise.  相似文献   

3.
4.
高强混凝土单轴压缩声发射频率特征试验研究   总被引:2,自引:1,他引:2  
为研究高强混凝土破裂前声发射信号的频率特征,对C60、C70、C80高强混凝土试件进行单轴压缩下的高、低频双通道声发射试验,得到破裂过程的力学参数和声发射参数,探求高强混凝土不同加载阶段声发射信号频率的分布特征。研究表明,三种高强混凝土在峰值应力前,高、低频通道声发射信号均集中在特定的频段内;临近峰值应力时,高、低频通道的声发射信号频率向低频段移动,同时优势频段内的频率趋于分散,这可作为预测高强混凝土破坏的前兆信息。  相似文献   

5.
The underwater hearing sensitivity of a young male harbor porpoise for tonal signals of various signal durations was quantified by using a behavioral psychophysical technique. The animal was trained to respond only when it detected an acoustic signal. Fifty percent detection thresholds were obtained for tonal signals (15 frequencies between 0.25-160 kHz, durations 0.5-5000 ms depending on the frequency; 134 frequency-duration combinations in total). Detection thresholds were quantified by varying signal amplitude by the 1-up 1-down staircase method. The hearing thresholds increased when the signal duration fell below the time constant of integration. The time constants, derived from an exponential model of integration [Plomp and Bouman, J. Acoust. Soc. Am. 31, 749-758 (1959)], varied from 629 ms at 2 kHz to 39 ms at 64 kHz. The integration times of the porpoises were similar to those of other mammals including humans, even though the porpoise is a marine mammal and a hearing specialist. The results enable more accurate estimations of the distances at which porpoises can detect short-duration environmental tonal signals. The audiogram thresholds presented by Kastelein et al. [J. Acoust. Soc. Am. 112, 334-344 (2002)], after correction for the frequency bandwidth of the FM signals, are similar to the results of the present study for signals of 1500 ms duration. Harbor porpoise hearing is more sensitive between 2 and 10 kHz, and less sensitive above 10 kHz, than formerly believed.  相似文献   

6.
Difference frequency acoustic wave from nonlinear interaction of two primary acoustic waves at frequencies of 76 and 114 kHz was utilized with a parametric acoustic array theory to estimate the nonlinearity parameter of water-saturated sandy sediment. Such nonlinearity parameter can be used as background information for the nonlinear acoustic investigation of bottom or sub-bottom profiling in the ocean sandy sediments. Because of its lower attenuation the difference frequency acoustic wave method can be usefully applied to estimate the nonlinearity parameter of ocean sediment in the ocean as well as under laboratory conditions. The nonlinearity parameter β for the water-saturated sandy sediment used as a reference in this study was estimated as β = 80.5 ± 5.1 at the difference frequency of 38 kHz. It was agreed very well with that estimated at the difference frequency of 67 kHz, when two primary frequencies were 137 and 204 kHz. The estimated nonlinearity parameter of water-saturated sandy sediment in this study was also compared and analyzed with those estimated in previously published literatures. It was suggested that the difference frequency wave method used to estimate the nonlinearity parameter of water-saturated sandy sediment can be employed as a good method to estimate the nonlinearity parameters of fluid-like granular media.  相似文献   

7.
A simultaneous masking procedure was used to derive four measures of frequency selectivity in the chinchilla. The first experiment measured critical masking ratios (CRs) at various signal frequencies. Estimates of the chinchillas' critical bandwidths derived from the CRs were much broader than comparable human estimates, indicating that the chinchilla may have inferior frequency selectivity. The second experiment measured critical bandwidths at 1, 2, and 4 kHz in a band-narrowing experiment. This technique yielded narrower estimates of critical bandwidth; however, chinchillas continued to exhibit poor frequency selectivity compared to man. The third experiment measured auditory-filter shape at 0.5, 1, and 2 kHz via rippled noise masking. Results of the rippled noise masking experiment indicate that auditory filters of humans and chinchillas are similar in terms of shape and bandwidth with chinchillas showing only slightly poorer frequency selectivity. The final experiment measured auditory filter shape at 0.5, 1, 2, and 4 kHz using notched noise masking. This experiment yielded auditory filter shapes and bandwidths similar to those derived from man. The discrepancy between the indirect estimates of frequency selectivity derived from CR and band-narrowing techniques and the direct estimates derived from rippled noise and notched noise masking are explained by taking into account the processing efficiency of the subjects.  相似文献   

8.
Temporal coherence of acoustic signals propagating in a fluctuating ocean is important for many practical applications and has been studied intensively experimentally. However, only a few theoretical formulations of temporal coherence exist. In the present paper, a three-dimensional (3D) modal theory of sound propagation in a fluctuating ocean is used to derive closed-form equations for the spatial-temporal coherence function of a broadband signal. The theory is applied to the analysis of the temporal coherence of a monochromatic signal propagating in an ocean perturbed by linear internal waves obeying the Garrett-Munk (G-M) spectral model. In particular, the temporal coherence function is calculated for propagation ranges up to 10(4) km and for five sound frequencies: 12, 25, 50, 75, and 100 Hz. Then, the dependence of the coherence time (i.e., the value of the time lag at which the temporal coherence decreases by a factor of e) on range and frequency is studied. The results obtained are compared with experimental data and predictions of the path-integral theory.  相似文献   

9.
The increasing presence of low frequency sources and the lack of acoustic standard measurement procedures make the extension of reverberation time measurements to frequencies below 100 Hz necessary. In typical ordinary rooms with volumes between 30 m3 and 200 m3 the sound field is non-diffuse at such low frequencies, entailing inhomogeneities in space and frequency domains. Presence of standing waves is also the main cause of bad quality of listening in terms of clarity and rumble effects. Since standard measurements according to ISO 3382 fail to achieve accurate and precise values in third octave bands due to non-linear decays caused by room modes, a new approach based on reverberation time measurements of single resonant frequencies (the modal reverberation time) has been introduced. From background theory, due to the intrinsic relation between modal decays and half bandwidth of resonant frequencies, two measurement methods have been proposed together with proper measurement procedures: a direct method based on interrupted source signal method, and an indirect method based on half bandwidth measurements. With microphones placed at corners of rectangular rooms in order to detect all modes and maximize SNRs, different source signals were tested. Anti-resonant sine waves and sweep signal turned out to be the most suitable for direct and indirect measurement methods respectively. From spatial measurements in an empty rectangular test room, comparison between direct and indirect methods showed good and significant agreements. This is the first experimental validation of the relation between resonant half bandwidth and modal reverberation time. Furthermore, comparisons between means and standard deviations of modal reverberation times and standard reverberation times in third octave bands confirm the inadequacy of standard procedure to get accurate and precise values at low frequencies with respect to the modal approach. Modal reverberation time measurements applied to furnished ordinary rooms confirm previous results in the limit of modal sound field: for highly damped modes due to furniture or acoustic treatment, the indirect method is not applicable due to strong suppression of modes and the consequent deviation of the acoustic field from a non-diffuse condition to a damped modal condition, while standard reverberation times align with direct method values. In the future, further investigations will be necessary in different rooms to improve uncertainty evaluation.  相似文献   

10.
Neighbors TH  Bjørnø L 《Ultrasonics》2006,44(Z1):e1461-e1465
Low frequency sea surface sound backscattering from approximately 100 Hz to a few kHz observed from the 1960s broadband measurements using explosive charges to the Critical Sea Test measurements conducted in the 1990 s is substantially higher than explained by rough sea surface scattering theory. Alternative theories for explaining this difference range from scattering by bubble plumes/clouds formed by breaking waves to stochastic scattering from fluctuating bubble layers near the sea surface. In each case, theories focus on reverberation in the absence of the large-scale surface wave height fluctuations that are characteristic of a sea that produces bubble clouds and plumes. At shallow grazing angles, shadowing of bubble plumes and clouds caused by surface wave height fluctuations may induce first order changes in the backscattered signal strength. To understand the magnitude of shadowing effects under controlled and repeatable conditions, scale model experiments were performed in a 3 m x 1.5 m x 1.5 m tank at the Technical University of Denmark. The experiments used a 1 MHz transducer as the source and receiver, a computer controlled data acquisition system, a scale model target, and a surface wave generator. The scattered signal strength fluctuations observed at shallow angles are characteristic of the predicted ocean environment. These experiments demonstrate that shadowing has a first order impact on bubble plume and cloud scattering strength and emphasize the usefulness of model scale experiments for studying underwater acoustic events under controlled conditions.  相似文献   

11.
Thresholds were measured for the detection of a temporal gap in a bandlimited noise signal presented in a continuous wideband masker, using an adaptive forced-choice procedure. In experiment I the ratio of signal spectrum level to masker spectrum level (the SMR) was fixed at 10 dB and gap thresholds were measured as a function of signal bandwidth at three center frequencies: 0.4, 1.0, and 6.5 kHz. Performance improved with increasing bandwidth and increasing center frequency. For a subset of conditions, gap threshold was also measured as bandwidth was varied keeping the upper cutoff frequency of the signal constant. In this case the variation of gap threshold with bandwidth was more gradual, suggesting that subjects detect the gap using primarily the highest frequency region available in the signal. At low center frequencies, however, subjects may have a limited ability to combine information in different frequency regions. In experiment II gap thresholds were measured as a function of SMR for several signal bandwidths at each of three center frequencies: 0.5, 1.0, and 6.5 kHz. Gap thresholds improved with increasing SMR, but the improvement was minimal for SMRs greater than 12-15 dB. The results are used to evaluate the relative importance of factors influencing gap threshold.  相似文献   

12.
The development of the pulse compression photoacoustic (PA) radar using linear frequency modulation (LFM) demonstrated experimentally that spectral matching of the signal to the ultrasonic transducer bandwidth does not necessarily produce the best PA signal-to-noise ratio, and it was shown that the optical and acoustic properties of the absorber will modify the optimal bandwidth. The effects of these factors are investigated in frequency-domain (FD) PA imaging by employing one-dimensional and axisymmetric models of the PA effect, and a Krimholtz-Leedom-Matthaei model for the employed transducers. LFM chirps with various bandwidths were utilized and transducer sensitivity was measured to ensure the accuracy of the model. The theory was compared with experimental results and it was shown that the PA effect can act as a low-pass filter in the signal generation. Furthermore, with the PA radar, the low-frequency behavior of two-dimensional wave generation can appear as a false peak in the cross correlation signal trace. These effects are important in optimizing controllable features of the FD-PA method to improve image quality.  相似文献   

13.
The development of a prototype parametric speaker comprised of 37 piezo-speakers, also known as “acoustic flashlight” is described. The sound pressure along the axis was measured for both the primary (38.5 kHz ultrasonic) signal and the secondary (demodulated) signal. Comparison with the theory for an equivalent piston radiating at the same frequency and the simulation of the piezo speakers as simple sources in the same hexagonal arrangement was made. The absorption coefficient and the radiation patterns of the primary and secondary signal were also measured. All the measurements and the simulation agree with the corresponding theories. The demodulated (audio frequency) signal behaves in the near field of the speaker in the same way (that of an equivalent piston) as the primary (ultrasonic frequency) signal, which results in the inheritance of its high directivity.  相似文献   

14.
Comodulation masking release (CMR) was investigated as a function of signal frequency (0.5-4.0 kHz) and the total bandwidth of noise centered on the signal frequency. Taking noncomodulated noise of the same bandwidth as the reference condition, CMR for modulated noise increased with increasing bandwidth of the flanking noise outside the critical band centered on the signal tone; however, this growth asymptoted for broad total bandwidths. These bandwidth effects were expressed by scaling the width of the flanking bands beyond the critical band centered on the signal frequency, approximately according to a critical bandwidth scale. After this scaling, signal frequency had negligible effect on CMR magnitude. For the low modulation frequencies involved, a beneficial effect on CMR at high carrier frequencies would not be expected, and none was observed. Some further trends in the masked thresholds in comodulated and noncomodulated conditions, and the choice of appropriate reference condition are discussed.  相似文献   

15.
 从能量分布和测量有效性的观点出发,提出了强电磁脉冲的能量有效带宽和动态范围有效带宽的概念。针对IEC61000-4-4,MIL-STD-464,IEC61000-4-2,IEC61312-1等标准规定的核电磁脉冲(NEMP)、雷电电磁脉冲(LEMP)、静电放电电磁脉冲(ESDEMP)等强电磁脉冲,分别计算了它们的能量有效带宽和动态范围有效带宽。通过分析,得知在一定的范围内,上述强电磁脉冲上升时间的变化对两种有效带宽的影响并不明显,在此基础上,确定了它们的测量带宽。计算结果为NEMP,ESD EMP及LEMP的60 dB有效带宽分别是371,786,1 233 MHz与96 kHz;99%能量有效带宽分别是46,95,183 MHz与15 kHz;不失真测量所需的带宽分别是152,307,916 MHz和95 kHz。  相似文献   

16.
南中国海存在孤立子内波条件下的声场时间相关半径   总被引:3,自引:1,他引:2  
在动态的海洋环境中,由于数据向量和拷贝场之间的失配,匹配场处理器的性能会发生退化。数据向量的时间相关半径是这种退化的一种量度。通过2001年ASIAEX南海实验中垂直阵上水听器接收到的声场数据求取了400 Hz窄带信号的声场时间相关。从实验数据处理结果观察到,伴随着传播路径上非线性内波的进入,声场的时间相关半径减小。同时利用一个二维的平流冻结海洋模型和传播路径上三个温度链的温度数据对声场进行了数值仿真,分析了不同频率下的声场时间相关半径。结果表明:实验结果与仿真的400 Hz信号的声场时间相关较为一致。可见,在时变的海洋环境下,声信道中存在孤立子内波将会使声场的时间相关半径大大缩短。   相似文献   

17.
Analytic formulas for acoustic interference patterns in shallow water are derived by ray method. Which can be used to guide acoustic measurements with limited horizontal distances. Some necessary approximations are taken for a concise expression. The analytic formulas represent the quantitative relationships between the interference-pattern and the signal frequency, bandwidth, depth of source and horizontal distance. Monofrequent signals, complicated signals and frequency-modulated signals are all studied. Several inferences are also deduced from the formulas. Both numerical simulations and experiment data are presented to prove that these formulas and their inferences can describe the critical characters of the acoustic interference pattern in the waveguide with a satisfying precision.  相似文献   

18.
In order to understand the fluctuations imposed upon low frequency (50 to 500 Hz) acoustic signals due to coastal internal waves, a large multilaboratory, multidisciplinary experiment was performed in the Mid-Atlantic Bight in the summer of 1995. This experiment featured the most complete set of environmental measurements (especially physical oceanography and geology) made to date in support of a coastal acoustics study. This support enabled the correlation of acoustic fluctuations to clearly observed ocean processes, especially those associated with the internal wave field. More specifically, a 16 element WHOI vertical line array (WVLA) was moored in 70 m of water off the New Jersey coast. Tomography sources of 224 Hz and 400 Hz were moored 32 km directly shoreward of this array, such that an acoustic path was constructed that was anti-parallel to the primary, onshore propagation direction for shelf generated internal wave solitons. These nonlinear internal waves, produced in packets as the tide shifts from ebb to flood, produce strong semidiurnal effects on the acoustic signals at our measurement location. Specifically, the internal waves in the acoustic waveguide cause significant coupling of energy between the propagating acoustic modes, resulting in broadband fluctuations in modal intensity, travel-time, and temporal coherence. The strong correlations between the environmental parameters and the internal wave field include an interesting sensitivity of the spread of an acoustic pulse to solitons near the receiver.  相似文献   

19.
Many acoustic metamaterials suffer from a narrow bandwidth transmission because of the impedance mismatch at the airmetamaterial interface. In this paper, a two-dimensional impedance-matched metamaterial with broadband transmission performance is investigated. The impedance matching layer is introduced for a gradient variation of effective impedance from the inlet of the unit to the outlet. The effective medium theory and corresponding effective model are used to explain the underlying mechanism. The improved energy transmission of our designs is demonstrated by experiment and numerical simulation within a broad frequency bandwidth over 6 kHz. Our impedance-matched design can be used to enhance sound absorption, which is expected to present improved acoustic performance in the applications of acoustic damper and muffler.  相似文献   

20.
Masked thresholds are measured and simulated for bandpass-noise signals ranging in bandwidth from 4 to 256 Hz in the presence of a masking bandpass noise also ranging in bandwidth from 4 to 256 Hz. Signal and masker are centered at 2 kHz. To investigate the role of temporal processing in simultaneous masking, simulations were performed with the modulation-filterbank model by Dau et al. [J. Acoust. Soc Am. 102, 2906-2919 (1997)]. For a fixed masker bandwidth, thresholds are independent of the signal bandwidth as long as the signal bandwidth does not exceed the masker bandwidth and thresholds decrease with increasing masker bandwidth in those conditions. A simple modulation-low-pass filter (energy integrator) would be sufficient to describe the experimental results in those conditions. In contrast, the processing by a modulation filterbank is necessary to account for the conditions of "asymmetry of masking," where thresholds for signals with bandwidths larger than the masker bandwidth are much lower than those for the reversed condition. In those conditions, the modulation-filterbank model is able to use the inherent higher modulation frequencies of the signal as an additional cue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号