首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A conjugate consisting of a thrombin aptamer tethered to the thrombin, Th, with a sensing nucleic acid (1) is used for the optical detection of DNA. The thrombin/aptamer complex blocks the biocatalytic functions of Th. Hybridization of the analyte DNA (2) to the sensing nucleic acid 1 yields a rigid duplex that detaches the aptamer from Th, a process that activates the protein toward the hydrolysis of bis(p-tosyl-Gly-Pro-Arg)-R110 (3) to the rhodamine 110 fluorophore (4). The system allows the DNA sensing with a sensitivity limit of 1 x 10-8 M. The aptamer/Th conjugate is also immobilized on glass slides for the optical detection of DNA. The dissociation of the aptamer/Th complex upon hybridization and the subsequent dehybridization of the duplex and the regeneration of the catalytically inactive Th/aptamer complex duplicate machinery functions.  相似文献   

2.
Deng QP  Tie C  Zhou YL  Zhang XX 《Electrophoresis》2012,33(9-10):1465-1470
Aptamers, which are nucleic acid oligonucleotides that can bind targets with high affinity and specificity, have been widely applied as affinity probes in capillary electrophoresis (CE). Due to relative weak interaction between aptamers and small molecules, the application of aptamer-based CE is still limited in certain compounds. A new strategy that is based on the aptamer structure-switch concept was designed for small molecule detection by a novel CE method. A carboxyfluorescein (fluorescein amidite, FAM) label DNA aptamer was first incubated with partial complementary strand (CS), and then the free aptamer and the aptamer-CS duplex were well separated and determined by metal cation mediated CE/laser-induced fluorescence. When the target was introduced into the incubated sample, the hybridized form was destabilized, resulting in the changes of the fluorescence intensities of the free aptamer and the aptamer-CS duplex. The length of CS was investigated and 12 mer CS showed the best sensitivity for the detection of cocaine. The presented CE-LIF method, which combines the separation power of CE with the specificity of interactions occurring between target, aptamer, and CS, could be a universal detection strategy for other aptamer-specified small molecules.  相似文献   

3.
In this work, a label-free electrochemical sensor based on target-induced displacement is reported with adenosine as the model analyte. The sensing substrate is prepared using a gold electrode modified with a self-assembled monolayer of 1,6-hexanedithiol that mediates the assembly of a gold nanoparticle film, which can increase the surface loading of capture probe and enhance the signal. An aptamer for adenosine is applied to hybridizing with the capture probe, yielding a double-stranded complex of the aptamer and the capture probe on the surface. The interaction of adenosine with the aptamer displaces the aptamer sequence and causes it to dissociate from the interface. This results in a decrease in the amount of aptamer/capture probe duplex form, and, accordingly, the desorption of methylene blue, an electroactive indicator bound to the duplex, from the electrode. Then, the redox current of the indicator can reflect the concentration of the analyte. The fabricated sensor is shown to exhibit high sensitivity, desirable selectivity and a three-decade wide linear range.  相似文献   

4.
Structure-switching signaling aptamers   总被引:1,自引:0,他引:1  
Aptamers are single-stranded nucleic acids with defined tertiary structures for selective binding to target molecules. Aptamers are also able to bind a complementary DNA sequence to form a duplex structure. In this report, we describe a strategy for designing aptamer-based fluorescent reporters that function by switching structures from DNA/DNA duplex to DNA/target complex. The duplex is formed between a fluorophore-labeled DNA aptamer and a small oligonucleotide modified with a quenching moiety (denoted QDNA). When the target is absent, the aptamer binds to QDNA, bringing the fluorophore and the quencher into close proximity for maximum fluorescence quenching. When the target is introduced, the aptamer prefers to form the aptamer-target complex. The switch of the binding partners for the aptamer occurs in conjunction with the generation of a strong fluorescence signal owing to the dissociation of QDNA. Herein, we report on the preparation of several structure-switching reporters from two existing DNA aptamers. Our design strategy is easy to generalize for any aptamer without prior knowledge of its secondary or tertiary structure, and should be suited for the development of aptamer-based reporters for real-time sensing applications.  相似文献   

5.
Combining the inhibited aptazyme and molecular beacon(MB),we developed a versatile sensing strategy for amplified detection of adenosine.In this strategy,the adenosine aptamer links to the 8-17 DNAzyme to form an aptazyme.A short sequence,denoted as inhibitor,is designed to form a duplex spanning the aptamer–DNAzyme junction,which blocks the catalytic function of the DNAzyme.Only in the presence of target adenosine,the aptamer binds to adenosine,thus the inhibitor dissociates from the aptamer portion of the aptazyme and can no longer form the stable duplex required to inhibit the catalytic activity of the aptazyme.The released DNAzyme domain will hybridize to the MB and catalyze the cleavage in the presence of Zn2+,making the fluorophore separate from the quencher and resulting in fluorescence signal.The results showed that the detection method has a dynamic range from 10 nmol/L to 1 nmol/L,with a detection limit of 10 nmol/L.  相似文献   

6.
Du N  Liao L  Xiao Y  Xiao X  Zhao Z  Lin Y 《Analytica chimica acta》2011,684(1-2):121-125
A highly sensitive and selective electrochemiluminescent (ECL) biosensor for the determination of adenosine was developed. Single DNA (capture DNA) was immobilized on the gold electrode through Au-thiol interaction at first. Another DNA modified with tris(2,2'-bipyridyl) ruthenium(II)-doped silica nanoparticles (Ru-SNPs) that contained adenosine aptamer was then modified on the electrode surface through hybridizing with the capture DNA. In the presence of adenosine, adenosine-aptamer complex is produced rather than aptamer-DNA duplex, resulting with the dissociation of Ru-SNPs-labeled aptamer from the electrode surface and the decrease in the ECL intensity. The decrease of ECL intensity has a direct relationship with the logarithm of adenosine concentration in the range of 1.0×10(-10) to 5.0×10(-6)molL(-1). The detection limit of the proposed method is 3.0×10(-11)molL(-1). The existence of guanosine, cytidine and uridine has little interference with adenosine detection, demonstrating that the developed biosensor owns a high selectivity to adenosine. In addition, the developed biosensor also demonstrates very good reusability, as after being reused for 30 times, its ECL signal still keeps 91% of its original state.  相似文献   

7.
Xiluan Yan  Masaaki Kai 《Talanta》2009,79(2):383-4519
We have developed a novel sensitive chemiluminescence (CL) aptasensor for the target assay as exemplified by using adenosine as a model target. In this work, we have demonstrated the signaling mechanism to make detection based on magnetic separation and 3,4,5-trimethoxyl-phenylglyoxal (TMPG), a special CL reagent as the signaling molecule, which reacts instantaneously with guanine nucleobases (G) of adenosine-binding aptamer strands. Briefly, amino-functioned capture DNA sequences are immobilized on the surface of carboxyl-modified magnetic beads, and then hybridized with label-free G-rich (including 15 guanine nucleobases) adenosine-binding aptamer strands to form our CL aptasensor. Upon the introduction of adenosine, the aptamer on the surface of magnetic beads is triggered to make structure switching to the formation of the adenosine/aptamer complex. Consequently, G-rich aptamer strands are forced to dissociate from magnetic beads sensing interface, resulting in a decrease of CL signal. The decrement of peak signal is proportional to the amount of adenosine. The effects of the amounts of capture DNA, aptamer, magnetic beads are investigated and optimized. It was found that the CL intensity had a linear dependency on the concentration of adenosine in the range of 4 × 10−7 to 1 × 10−5 M. With a low detection limit of 8 × 10−8 M and simplicity in CL detection, this novel technique will offer a great promise for future target/aptamer analysis.  相似文献   

8.
The aim of this study is to develop a selective adenosine aptamer sensor using a rational approach. Unlike traditional RNA aptamers developed from SELEX, duplex DNA containing an abasic site can function as a general scaffold to rationally design aptamers for small aromatic molecules. We discovered that abasic site-containing triplex DNA can also function as an aptamer and provide better affinity than duplex DNA aptamers. A novel adenosine aptamer sensor was designed using such a triplex. The aptamer is modified with furano-dU in the binding site to sense the binding. The sensor bound adenosine has a dissociation constant of 400 nM, more than tenfold stronger than the adenosine aptamer developed from SELEX. The binding quenched furano-dU fluorescence by 40%. It was also demonstrated in this study that this sensor is selective for adenosine over uridine, cytidine, guanosine, ATP, and AMP. The detection limit of this sensor is about 50 nM. The sensor can be used to quantify adenosine concentrations between 50 nM and 2 μM.  相似文献   

9.
Purines and their derivatives are highly important molecules in biology for nucleic acid synthesis, energy storage, and signaling. Although many DNA aptamers have been obtained for binding adenine derivatives such as adenosine, adenosine monophosphate, and adenosine triphosphate, success for the specific binding of guanosine has been limited. Instead of performing new aptamer selections, we report herein a base-excision strategy to engineer existing aptamers to bind guanosine. Both a Na+-binding aptamer and the classical adenosine aptamer have been manipulated as base-excising scaffolds. A total of seven guanosine aptamers were designed, of which the G16-deleted Na+ aptamer showed the highest bindng specificity and affinity for guanosine with an apparent dissociation constant of 0.78 mm . Single monophosphate difference in the target molecule was also recognizable. The generality of both the aptamer scaffold and excised site were systematically studied. Overall, this work provides a few guanosine binding aptamers by using a non-SELEX method. It also provides deeper insights into the engineering of aptamers for molecular recognition.  相似文献   

10.
This study demonstrates the self‐assembly of inhibitor/enzyme‐tethered nucleic acid fragments or enzyme I‐, enzyme II‐modified nucleic acids into functional nanostructures that lead to the controlled inhibition of the enzyme or the activation of an enzyme cascade. In one system, the anti‐cocaine aptamer subunits are modified with monocarboxy methylene blue (MB+) as the inhibitor and with choline oxidase (ChOx). The cocaine‐induced self‐assembly of the aptamer subunits complex results in the inhibition of ChOx by MB+. In a further configuration, two nucleic acids of limited complementarity are functionalized at their 3′ and 5′ ends with glucose oxidase (GOx) and horseradish peroxidase (HRP), respectively, or with MB+ and ChOx. In the presence of a target DNA sequence, synergistic complementary base‐pairing occurs, thus leading to stable supramolecular Y‐shaped nanostructures of the nucleic acid units. A GOx/HRP bienzyme cascade or the programmed inhibition of ChOx by MB+ is demonstrated in the resulting nucleic acid nanostructures. A quantitative theoretical model that describes the nucleic acid assemblies and that results in the inhibition of ChOx by MB+ or in the activation of the GOx/HRP cascade, respectively, is provided.  相似文献   

11.
宋畅  刘畅  马紫玉  潘瑞蓉  施海蔚  孔德昭  张景慧  沈薇  唐盛 《色谱》2022,40(11):1014-1021
生物胺的含量是衡量食品卫生状况和药物纯度的重要标志之一,建立食品药品中生物胺的精准、灵敏检测具有重要的实际意义。该文基于核酸适配体置换生物胺信号源并结合荧光信号循环扩增的策略,建立了一种新型的同时检测鱼肉、猪肉和抗生素中4种生物胺的高效液相色谱法(HPLC)。首先通过两步信号置换,将无荧光信号的目标物转换为有荧光信号的核酸探针;再结合双链特异性核酸酶辅助信号扩增策略,获取大量不同长度和碱基序列的核酸探针;最后借助HPLC平台实现实际样品中多种生物胺信号的精确识别。文章研究了核酸探针的碱基序列和长度对出峰时间和前后顺序的影响,以提高荧光信号的区分度。通过正交实验探讨了柱温、流速和梯度洗脱过程、反应温度、孵化时间等对信号分离的影响,确定最优条件,提高信号的分离效率。该方法对目标物酪胺、组胺、精胺和色胺的检出限分别为0.25、0.21、0.27和0.19 pmol/L,线性范围为1 pmol/L~1 μmol/L。通过对硫酸大庆霉素、鱼肉和猪肉样品中生物胺含量进行检测,研究了该方法检测实际样品的可行性。该方法可精准识别、捕获和分离复杂基质样品中的生物胺组分,能有效提高对目标分析物的选择性,并降低实际样品中的基质干扰,有望为食品药品分析领域提供一种新的思路。  相似文献   

12.
The development of aptamer technology considerably broadens the utility of nucleic acids as molecular recognition elements, because it allows the creation of DNA or RNA molecules for binding a wide variety of analytes (targets) with high affinity and specificity. Several recent studies have focused on developing rational design strategies for transducing aptamer-target recognition events into easily detectable signals, so that aptamers can be widely exploited for detection directed applications. We have devised a generalizable strategy for designing nonfluorescent aptamers that can be turned into fluorescence-signaling reporters. The resultant signaling probes are denoted "structure-switching signaling aptamers" as they report target binding by switching structures from DNA/DNA duplex to DNA/target complex. The duplex is formed between a fluorophore-labeled DNA aptamer and an antisense DNA oligonucleotide modified with a quencher (denoted QDNA). In the absence of the target, the aptamer hybridizes with QDNA, bringing the fluorophore into close proximity of the quencher for efficient fluorescence quenching. When this system is exposed to the target, the aptamer switches its binding partner from QDNA to the target. This structure-switching event is coupled to the generation of a fluorescent signal through the departure of QDNA, permitting the real-time monitoring of the aptamer-target recognition. In this article, we discuss the conceptual framework of the structure-switching approach, the essential features of structure-switching signaling aptamers as well as remaining challenges and possible solutions associated with this new methodology.  相似文献   

13.
制备了一种可用于腺苷检测的适体生物传感器,以羧基磁性微球为载体,在其表面组装腺苷适体与地高辛修饰之腺苷适体互补的核酸短链,先加入一定浓度的腺苷,再连接抗地高辛的碱性磷酸酯酶,用化学发光法检测发光值,根据腺苷加入前后化学发光强度的变化来定量检测腺苷。实验考察了羧基磁性微球用量、氨基修饰的腺苷适体用量、地高辛修饰的核酸短链用量及抗地高辛的碱性磷酸酯酶用量对体系组装和腺苷识别的影响。结果显示,优化条件下,在1.0×10~(-7)~1.0×10~(-3)mol/L范围内,腺苷浓度的对数与发光信号呈线性关系(r~2=0.976 9),定量下限为1.0×10~(-7)mol/L。与其他核苷相比,腺苷的选择特异性更好,且在稀释血清中适体对腺苷有很好的特异性识别能力。  相似文献   

14.
15.
Liao D  Jiao H  Wang B  Lin Q  Yu C 《The Analyst》2012,137(4):978-982
We have developed a simple, inexpensive, and label-free method for the selective detection of adenosine. Klenow fragment polymerase (KF polymerase) is a commonly-used 5' to 3' DNA polymerase, it also has 3' to 5' exonuclease activity that can digest single-stranded DNA. An adenosine binding DNA aptamer was employed, the aptamer was split into two pieces of single-stranded DNA (aptamer-A1 + aptamer-A2). Without the addition of adenosine, aptamer-A1 and aptamer-A2 existed as single-stranded DNA which could be efficiently degraded by the exonuclease activity of KF polymerase. Much reduced background fluorescence was obtained when SYBR Green dye was added. However, in the presence of adenosine, aptamer-A1 and aptamer-A2 bound to adenosine, and hybridization of the complementary sequences resulted in the formation of a duplex DNA structure, which could initiate DNA polymerization. The addition of SYBR Green dye resulted in a very high fluorescence enhancement, which could be used for the quantification of adenosine.  相似文献   

16.
An anti-adenosine aptamer was evaluated as a stationary phase in packed capillary liquid chromatography. Using an aqueous mobile phase containing 20 mM Mg2+, adenosine was strongly retained on the column. A gradient of increasing Ni2+ (to 18 mM), which is presumed to complex with nitrogen atoms in adenosine involved in binding to the aptamer, eluted adenosine in a narrow zone. Up to 6 microl of 1.2 microM adenosine could be injected onto the 150-microm I.D. x 7 cm long column without loss of adenosine. With UV absorbance detection, the detection limit was 30 nM or 120 fmol (4 microl injected). Samples could be repetitively injected with 4.6% relative standard deviation in peak area. Columns were stable to at least 200 injections. The adenosine assay, which required no sample preparation, was used on microdialysis samples collected from the somatosensory cortex of chloral hydrate anesthetized rats. Total analysis times were short enough that dialysate samples could be injected every 5 min. Basal dialysate concentrations of adenosine stabilized at 87+/-10 nM (n=5) with the probe operated at 0.6 microl/min.  相似文献   

17.
In this work, a target-specific aptamer chiral stationary phase (CSP) based on the oligonucleotidic selector binding to silica particles through a covalent linkage was developed. An anti-d-adenosine aptamer was coupled, using an in-situ method, by way of an amide bond to macroporous carboxylic acid based silica. Frontal chromatography analysis was performed to evaluate the column properties, i.e., determination of the stationary phase binding capacity and the dissociation constant of the target-immobilized aptamer complex. It was found that such covalent immobilization was able to maintain the aptamer binding properties at a convenient level for an efficient enantioseparation. Subsequently, the separation of adenosine enantiomers was investigated under different operating conditions, including changes in the eluent’s ionic strength and the proportion of organic modifiers as well as column temperatures. It was demonstrated that, under various conditions of use and storage, the present CSP was stable over time.  相似文献   

18.
A solid-state electrochemiluminescence sensing platform based on ferrocene-labeled structure-switching signaling aptamer (Fc-aptamer) for highly sensitive detection of small molecules is developed successfully using adenosine as a model analyte. Such special sensing platform included two main parts, an electrochemiluminescence (ECL) substrate and an ECL intensity switch. The ECL substrate was made by modifying the complex of Au nanoparticle and Ruthenium (II) tris-(bipyridine) (Ru(bpy)32+-AuNPs) onto Au electrode. An anti-adenosine aptamer labeled by ferrocene acted as the ECL intensity switch. A short complementary ssDNA for the aptamer was applied to hybridizing with the aptamer, yielding a double-stranded complex of the aptamer and the ssDNA on the electrode surface. The introduction of adenosine triggered structure switching of the aptamer. As a result, the ssDNA was forced to dissociate from the sensing platform. Such structural change of the aptamer resulted in an obvious ECL intensity decrease due to the increased quenching effect of Fc to the ECL substrate. The analytic results were sensitive and specific.  相似文献   

19.
韩诗邈  赵丽萍  杨歌  屈锋 《色谱》2021,39(7):721-729
8-氧代鸟嘌呤DNA糖基化酶(OGG1)是人体中重要的功能蛋白,在修复DNA氧化性损伤过程中起关键作用。氧化应激等引起的氧化损伤易导致炎症反应的发生,对OGG1的抑制可以一定程度上起到缓解作用;对癌细胞OGG1的抑制有望作为癌症治疗的新方法。目前的研究多集中于小分子对OGG1功能的影响和调控,而OGG1的适配体筛选尚未见报道。作为功能配体,适配体具有合成简单、高亲和力及高特异性等优点。该文筛选了OGG1的核酸适配体,结合毛细管电泳高效快速的优点建立了两种基于毛细管电泳-指数富集进化(CE-SELEX)技术的筛选方法:同步竞争法和多轮筛选法。同步竞争法利用单链结合蛋白(SSB)与核酸库中单链核酸的强结合能力,与目标蛋白OGG1组成竞争体系,并通过增加SSB浓度来增加竞争筛选压力,以去除与OGG1弱结合的核酸序列,一步筛选即可获得与OGG1强结合的核酸序列。多轮筛选法在相同孵育条件和电泳条件下,经3轮筛选获得OGG1的核酸适配体。比较两种筛选方法的筛选结果,筛选结果中频次最高的3条候选核酸适配体序列一致,其解离常数(KD)值在1.71~2.64 μmol/L之间。分子对接分析结果表明候选适配体1(Apt 1)可能与OGG1中具有修复氧化性损伤功能的活性口袋结合。通过对两种筛选方法的对比,证明同步竞争法更加快速高效,对其他蛋白核酸适配体筛选方法的选择具有一定的指导意义。得到的适配体有望用于OGG1功能调控,以抑制其修复功能。  相似文献   

20.
Arian D  Kovbasyuk L  Mokhir A 《Inorganic chemistry》2011,50(23):12010-12017
Photocatalytic activity of a photosensitizer (PS) in an oligodeoxyribonucleotide duplex 5'-PS~ODN1/ODN2~Q-3' is inhibited because of close proximity of a quencher Q. The ODN2 in this duplex is selected to be longer than the ODN1. Therefore, in the presence of a nucleic acid (analyte), which is fully complementary to the ODN2 strand, the duplex is decomposed with formation of an analyte/ODN2~Q duplex and a catalytically active, single stranded PS~ODN1. In this way the catalytic activity of the PS can be controlled by the specific nucleic acids. We applied this reaction earlier for the amplified detection of ribonucleic acids in live cells (Arian, D.; Cló, E.; Gothelf, K.; Mokhir, A. Chem.-Eur. J.2010, 16(1), 288). As a photosensitizer (PS) we used In(3+)(pyropheophorbide-a)chloride and as a quencher (Q)--Black-Hole-Quencher-3 (BHQ-3). The In(3+) complex is a highly active photocatalyst in aqueous solution. However, it can coordinate additional ligands containing thiols (e.g., proteins, peptides, and aminoacids), that modulate properties of the complex itself and of the corresponding bio- molecules. These possible interactions can lead to undesired side effects of nucleic acid controlled photocatalysts (PS~ODN1/ODN2~Q) in live cells. In this work we explored the possibility to substitute the In(3+) complex for those ones of divalent metal ions, Zn(2+) and Pd(2+), which exhibit lower or no tendency to coordinate the fifth ligand. We found that one of the compounds tested (Pd(pyropheophorbide-a) is as potent and as stable photosensitizer as its In(3+) analogue, but does not coordinate additional ligands that makes it more suitable for cellular applications. When the Pd complex was introduced in the duplex PS~ODN1/ODN2~Q as a PS, its photocatalytic activity could be controlled by nucleic acids as efficiently as that of the corresponding In(3+) complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号